Publications
Detect-and-avoid closed-loop evaluation of noncooperative well clear definitions
Summary
Summary
Four candidate detect-and-avoid well clear definitions for unmanned aircraft systems encountering noncooperative aircraft are evaluated using safety and operational suitability metrics. These candidates were proposed in previous research based on unmitigated collision risk, maneuver initiation ranges, and other considerations. Noncooperative aircraft refer to aircraft without a functioning transponder. One million...
Representative small UAS trajectories for encounter modeling
Summary
Summary
As unmanned aircraft systems (UASs) continue to integrate into the U.S. National Airspace System (NAS), there is a need to quantify the risk of airborne collisions between unmanned and manned aircraft to support regulation and standards development. Both regulators and standards developing organizations have made extensive use of Monte Carlo...
Unmanned aircraft sense and avoid radar: surrogate flight testing performance evaluation
Summary
Summary
Unmanned aircraft systems (UAS) have proven to have distinct advantages compared to manned aircraft for a variety of tasks. Current airspace regulations require a capability to sense and avoid other aircraft to replace the ability of a pilot to see and avoid other traffic. A prototype phased-array radar was developed...
Due regard encounter model version 1.0
Summary
Summary
Airspace encounter models describe encounter situations that may occur between aircraft in the airspace and are a critical component of safety assessment of sense and avoid (SAA) systems for Unmanned Aircraft Systems (UASs). Some UAS will fly in international airspace under due regard and may encounter other aircraft during these...
A safety driven approach to the development of an airborne sense and avoid system
Summary
Summary
Sense and avoid is the primary technical barrier to increased unmanned aircraft system airspace access. A safety assessment driven approach to sense and avoid system design and requirements validation is being employed to ensure safety and operational suitability. The foundation of this approach is a fast-time modeling and simulation architecture...
Establishing a risk-based separation standard for unmanned aircraft self separation
Summary
Summary
Unmanned Aircraft Systems require an ability to sense and avoid other air traffic to gain access to civil airspace and meet requirements in civil aviation regulations. One sense and avoid function is self separation, which requires that aircraft remain well clear. An approach is proposed in this paper to treat...
Establishing a risk-based separation standard for unmanned aircraft self separation
Summary
Summary
Unmanned Aircraft Systems require an ability to sense and avoid other air traffic to gain access to civil airspace and meet requirements in civil aviation regulations. One sense and avoid function is self separation, which requires that aircraft remain "well clear." An approach is proposed in this paper to treat...
Airspace encounter models for estimating collision risk
Summary
Summary
Airspace encounter models, providing a statistical representation of geometries and aircraft behavior during a close encounter, are required to estimate the safety and robustness of collision avoidance systems. Prior encounter models, developed to certify the Traffic Alert and Collision Avoidance System, have been limited in their ability to capture important...
Encounter models for unconventional aircraft version 1.0
Summary
Summary
Airspace encounter models, covering close encounter situations that may occur after standard separation assurance has been lost, are a critical component in the safety assessment of aviation procedures and collision avoidance systems. Of particular relevance to Unmanned Aircraft Systems (UAS) is the potential for encountering general aviation aircraft that are...
Airspace encounter models for conventional and unconventional aircraft
Summary
Summary
Collision avoidance systems play an important role in the future of aviation safety. Before new technologies on board manned or unmanned aircraft are deployed, rigorous analysis using encounter simulations is required to prove system robustness. These simulations rely on models that accurately reflect the geometries and dynamics of aircraft encounters...