Publications

Refine Results

(Filters Applied) Clear All

The next-generation multimission U.S. surveillance radar network

Published in:
Bull. American Meteorological Society, Vol. 88, No. 11, November 2007, pp. 1739-1751.

Summary

Current U.S. weather and aircraft surveillance radar networks vary in age from 10 to more than 40 years. Ongoing sustainment and upgrade programs can keep these operating in the near to mid-term, but the responsible agencies National Weather Service (NWS), Federal Aviation Administration (FAA), and the Departments of Defense (DoD) and Homeland Security (DHS) recognize that large-scale replacement activities must begin during the next decade. The National Weather Radar Testbed (NWRT) in Norman, Oklahoma, is a multiagency project demonstrating operational weather measurements capability enhancements that could be realized using electronically steered phased-array radars as a replacement for the current Weather Surveillance Radar-1988 Doppler (WSR-88D). FAA support for the NWRT and related efforts address air traffic control (ATC) and homeland defense surveillance missions that could be simultaneously accomplished using the agile-beam capability of a phased array weather radar network. In this paper, we discuss technology issues, operational considerations, and cost trades associated with the concept of replacing current national surveillance radars with a single network of multimission phased array radars (MPAR). We begin by describing the current U.S. national weather and aircraft surveillance radar networks and their technical parameters. The airspace coverage and surveillance capabilities of these existing radars provide a starting point for defining requirements for the next-generation airspace surveillance system. We next describe a conceptual MPAR high-level system design and our initial development and testing of critical subsystems. This work, in turn, has provided a solid basis for estimating MPAR costs for comparison with existing, mechanically scanned operational surveillance radars. To assess the numbers of MPARs that would need to be procured, we present a conceptual MPAR network configuration that duplicates airspace coverage provided by current operational radars. Finally, we discuss how the improved surveillance capabilities of MPAR could be utilized to more effectively meet the weather and aircraft surveillance needs of U.S. civil and military agencies.
READ LESS

Summary

Current U.S. weather and aircraft surveillance radar networks vary in age from 10 to more than 40 years. Ongoing sustainment and upgrade programs can keep these operating in the near to mid-term, but the responsible agencies National Weather Service (NWS), Federal Aviation Administration (FAA), and the Departments of Defense (DoD)...

READ MORE

Enhanced regional situational awareness

Published in:
Lincoln Laboratory Journal, Vol. 16, No. 2, June 2007, pp. 355-380.

Summary

Airspace protection in the capital area is provided by an Integrated Air Defense System (IADS) created through the coordinated response of U.S. government and local law-enforcement agencies, including the Department of Defense, the Department of Homeland Security, the Federal Aviation Administration, and the Capitol Police. The IADS includes U.S. Coast Guard helicopters, fighter aircraft, and airborne early-warning aircraft cued by surveillance radars. Under Operation Noble Eagle, the response to a threat includes warning flares deployed from fighter aircraft and, ultimately, the use of surface and air-launched missiles. Selecting the appropriate response requires a means for rapidly assessing the aircraft threat. New and existing sensors must be simultaneously cued to the target of interest and integrated with existing sources of information to display a common-air-picture display to support the decision makers. This article describes the development of an Enhanced Regional Situation Awareness system, an integrated sensing and decision support system developed for the complex and busy airspace surrounding the National Capital Region.
READ LESS

Summary

Airspace protection in the capital area is provided by an Integrated Air Defense System (IADS) created through the coordinated response of U.S. government and local law-enforcement agencies, including the Department of Defense, the Department of Homeland Security, the Federal Aviation Administration, and the Capitol Police. The IADS includes U.S. Coast...

READ MORE

Multifunction phased array radar: technical synopsis, cost implications, and operational capabilities

Published in:
87th Annual American Meteorological Society Meeting, 14-18 January 2007.

Summary

Current U.S. weather and aircraft surveillance radar networks vary in age from 10 to more than 40 years. Ongoing sustainment and upgrade programs can keep these operating in the near to mid term, but the responsible agencies (FAA, NWS and DoD/DHS) recognize that large-scale replacement activities must begin during the next decade. In addition, these agencies are re-evaluating their operational requirements for radar surveillance. FAA has announced that next generation air traffic control (ATC) will be based on Automatic Dependent Surveillance - Broadcast (ADS-B) (Scardina, 2002) rather than current primary and secondary radars. ADS-B, however, requires verification and back-up services which could be provided by retaining or replacing primary ATC radars.
READ LESS

Summary

Current U.S. weather and aircraft surveillance radar networks vary in age from 10 to more than 40 years. Ongoing sustainment and upgrade programs can keep these operating in the near to mid term, but the responsible agencies (FAA, NWS and DoD/DHS) recognize that large-scale replacement activities must begin during the...

READ MORE

Surveillance accuracy requirements in support of separation services

Published in:
Lincoln Laboratory Journal, Vol. 16, No. 1, June 2006, pp. 97-122.

Summary

The Federal Aviation Administration is modernizing the Air Traffic Control system to improve flight efficiency, to increase airspace capacity, to reduce flight delays, and to control operating costs as the demand for air travel continues to grow. Promising new surveillance technologies such as Automatic Dependent Surveillance Broadcast and multisensor track fusion offer the potential to augment the ground-based surveillance and controller-display systems by providing more timely and complete information about aircraft. The resulting improvement in surveillance accuracy may potentially allow the expanded use of the minimum safe-separation distance between aircraft. However, these new technologies cannot be introduced with today's radar-separation standards, because they assume surveillance will be provided only through radar technology. In this article, we review the background of aircraft surveillance and the establishment of radar separation standards. The required surveillance accuracy to safely support aircraft separation with National Airspace System technologies is then derived from currently widely used surveillance systems. We end with flight test validation of the derived results, which can be used to evaluate new technologies.
READ LESS

Summary

The Federal Aviation Administration is modernizing the Air Traffic Control system to improve flight efficiency, to increase airspace capacity, to reduce flight delays, and to control operating costs as the demand for air travel continues to grow. Promising new surveillance technologies such as Automatic Dependent Surveillance Broadcast and multisensor track...

READ MORE

Multi-function phased array radar for U.S. civil-sector surveillance needs

Summary

This paper is a concept study for possible future utilization of active electronically scanned radars to provide weather and aircraft surveillance functions in U.S. airspace. If critical technology costs decrease sufficiently, multi-function phased array radars might prove to be a cost effective alternative to current surveillance radars, since the number of required radars would be reduced, and maintenance and logistics infrastructure would be consolidated. A radar configuration that provides terminal-area and long-range aircraft surveillance and weather measurement capability is described and a radar network design that replicates or exceeds current airspace coverage is presented. Key technology issues are examined, including transmit-receive elements, overlapped sub-arrays, the digital beamformer, and weather and aircraft post-processing algorithms. We conclude by discussing implications relative to future national weather and non-cooperative aircraft target surveillance needs. The U.S. Government currently operates four separate ground based surveillance radar networks supporting public and aviation-specific weather warnings and advisories, and primary or "skin paint" aircraft surveillance. The separate networks are: (i) The 10-cm wavelength NEXRAD or WSR88-D (Serafin and Wilson, 2000) national-scale weather radar network. This is managed jointly by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Department of Defense (DoD). (ii) The 5-cm wavelength Terminal Doppler Weather Radars (TDWR) (Evans and Turnbull, 1989) deployed at large airports to detect low-altitude wind-shear phenomena. (iii) The 10-cm wavelength Airport Surveillance Radars (ASR-9 and ASR-11) (Taylor and Brunins, 1985) providing terminal area primary aircraft surveillance and vertically averaged precipitation reflectivity measurements. (iv) The 30-cm wavelength Air Route Surveillance Radars (ARSR-1, 2, 3 and 4) (Weber, 2005) that provide national-scale primary aircraft surveillance. The latter three networks are managed primarily by the FAA, although the DoD operates a limited number of ASRs and has partial responsibility for maintenance of the ARSR network. In total there are 513 of these radars in the contiguous United States (CONUS), Alaska, and Hawaii. The agencies that maintain these radars conduct various "life extension" activities that are projected to extend their operational life to approximately 2020. At this time, there are no defined programs to acquire replacement radars. The NWS and FAA have recently begun exploratory research on the capabilities and technology issues related to the use of multi-function phased array radar (MPAR) as a possible replacement approach. A key concept is that the MPAR network could provide both weather and primary aircraft surveillance, thereby reducing the total number of ground-based radars. In addition, MPAR surveillance capabilities would likely exceed those of current operational radars, for example, by providing more frequent weather volume scans and by providing vertical resolution and height estimates for primary aircraft targets. Table 1 summarizes the capabilities of current U.S. surveillance radars. These are approximations and do not fully capture variations in capability as a function, for example, of range or operating mode. A key observation is that significant variation in update rates between the aircraft and weather surveillance functions are currently achieved by using fundamentally different antenna patterns--low-gain vertical "fan beams" for aircraft surveillance that are scanned in azimuth only, versus high-gain weather radar "pencil beams" that are scanned volumetrically at much lower update rates. Note also that, if expressed in consistent units, the power-aperture products of the weather radars significantly exceed those of the ASRs and ARSRs. In the next section, we present a concept design for MPAR and demonstrate that it can simultaneously provide the measurement capabilities summarized in Table 1. In Section 3 we present an MPAR network concept that duplicates the airspace coverage provided by the current multiple radar networks. Section 4 discusses technology issues and associated cost considerations. We conclude in Section 5 by discussing implications relative to future national weather and non-cooperative aircraft target surveillance needs.
READ LESS

Summary

This paper is a concept study for possible future utilization of active electronically scanned radars to provide weather and aircraft surveillance functions in U.S. airspace. If critical technology costs decrease sufficiently, multi-function phased array radars might prove to be a cost effective alternative to current surveillance radars, since the number...

READ MORE

Showing Results

1-5 of 5