Publications

Refine Results

(Filters Applied) Clear All

Enhanced regional situational awareness

Published in:
Lincoln Laboratory Journal, Vol. 16, No. 2, June 2007, pp. 355-380.

Summary

Airspace protection in the capital area is provided by an Integrated Air Defense System (IADS) created through the coordinated response of U.S. government and local law-enforcement agencies, including the Department of Defense, the Department of Homeland Security, the Federal Aviation Administration, and the Capitol Police. The IADS includes U.S. Coast Guard helicopters, fighter aircraft, and airborne early-warning aircraft cued by surveillance radars. Under Operation Noble Eagle, the response to a threat includes warning flares deployed from fighter aircraft and, ultimately, the use of surface and air-launched missiles. Selecting the appropriate response requires a means for rapidly assessing the aircraft threat. New and existing sensors must be simultaneously cued to the target of interest and integrated with existing sources of information to display a common-air-picture display to support the decision makers. This article describes the development of an Enhanced Regional Situation Awareness system, an integrated sensing and decision support system developed for the complex and busy airspace surrounding the National Capital Region.
READ LESS

Summary

Airspace protection in the capital area is provided by an Integrated Air Defense System (IADS) created through the coordinated response of U.S. government and local law-enforcement agencies, including the Department of Defense, the Department of Homeland Security, the Federal Aviation Administration, and the Capitol Police. The IADS includes U.S. Coast...

READ MORE

A human factors approach to the development and evaluation of the Graphical Weather Service

Published in:
14th AIAA/IEEE Digital Avionics Systems Conf., 5-9 November 1995, pp. 264-269.

Summary

With the sponsorship of the Federal Aviation Administration, MIT Lincoln Laboratory is developing the Graphical Weather Service (GWS), a data link application that provides near-real-time ground-based weather information to pilots. Through the use of GWS, the pilot will be able to access both graphical and text weather information for any location in the contiguous United States. In-cockpit access to near-real-time weather information may substantially affect the situational awareness and subsequent decision making of pilots. In developing and evaluating this service, a human factors approach has been taken. This paper is an overview of the human factors activities performed in the development and evaluation of GWS.
READ LESS

Summary

With the sponsorship of the Federal Aviation Administration, MIT Lincoln Laboratory is developing the Graphical Weather Service (GWS), a data link application that provides near-real-time ground-based weather information to pilots. Through the use of GWS, the pilot will be able to access both graphical and text weather information for any...

READ MORE

Results of simulation studies of precision runway monitoring of independent approaches to closely-spaced parallel runways

Author:
Published in:
J. ATC, January-March 1993, pp. 18-24.

Summary

Increased air travel in recent years has resulted in a steady increase in the number and duration of flight delays. In an attempt to increase airport capacity, MIT Lincoln Laboratory, under the sponsorship of the Federal Aviation Administration (FAA), has supported the development of a Precision Runway Monitor (PRM). The PRM is an advanced radar monitoring system designed to increase utilization of closely-spaced, multiple, parallel runways during adverse weather conditions. The PRM consists of radar which has higher accuracy and a faster update interval than the current system, and a high resolution, color display that informs the Monitor Controller of the occurrence of hazardous flight path deviations by means of automated visual and vocal warning alerts. Studies of air traffic controller reaction to the PRM were conducted at Memphis Airport and Raleigh-Durham Airport in order to evaluate system effectiveness and to assess the effects of key variables on controller reaction time. This paper documents the results of the controller studies conducted at Memphis by MIT Lincoln Laboratory. The testing consisted of the presentation of real-time simulations, and measurement of air traffic controllers were surveyed regarding the acceptability of the PRM.
READ LESS

Summary

Increased air travel in recent years has resulted in a steady increase in the number and duration of flight delays. In an attempt to increase airport capacity, MIT Lincoln Laboratory, under the sponsorship of the Federal Aviation Administration (FAA), has supported the development of a Precision Runway Monitor (PRM). The...

READ MORE

Showing Results

1-3 of 3