Publications

Refine Results

(Filters Applied) Clear All

Commercial aviation encounters with severe low altitude turbulence

Published in:
11th Conf. on Aviation, Range and Aerospace Meteorology, 4-8 October 2004.

Summary

Turbulence encounters continue to be one of the largest sources of personal injury in both commercial and general aviation. A significant percentage of these encounters occur without warning, at low altitudes, and have been observed to occur outside of the strong reflectivity storm cores where pilots typically anticipate severe wind shear and/or turbulence. In this paper, statistics illustrating the altitude distributions of specific turbulence encounters are presented. These results suggest that a significant percentage of the moderate and greater turbulence encounters occur at low altitudes. One particularly dangerous form of low altitude turbulence, often associated with convective storms, is the buoyancy wave (BW). Observational evidence of commercial airline encounters with these phenomena indicates that they can cause an impairment of aircraft control that results in significant attitude and altitude fluctuations. Over the past two years several serious aircraft incidents involving low altitude turbulence have been reported. In our investigation of the meteorological conditions surrounding these incidents, there are strong indications that buoyancy waves played a major role in initiating the turbulence. While encounters with this type of buoyancy wave-induced turbulence can be as severe as microburst wind shear encounters, they are typically not detected by current wind shear detection systems. However, these phenomena do have detectable signatures. We suggest two modifications to existing wind shear detection systems that would make it possible to detect these potentially dangerous phenomena.
READ LESS

Summary

Turbulence encounters continue to be one of the largest sources of personal injury in both commercial and general aviation. A significant percentage of these encounters occur without warning, at low altitudes, and have been observed to occur outside of the strong reflectivity storm cores where pilots typically anticipate severe wind...

READ MORE

An examination of wind shear alert integration at the Dallas/Ft. Worth International Airport (DFW)

Published in:
MIT Lincoln Laboratory Report ATC-309

Summary

The Dallas / Fort Worth International Airport (DFW) is one of the four demonstration system sites for the Integrated Terminal Weather System (ITWS). One of the primary benefits of the ITWS is a suite of algorithms that utilize data from the Terminal Doppler Weather Radar (TDWR) to generate wind shear alerts. DFW also benefits from a Network Expansion of the Low-Level Wind Shear Advisory System (LLWAS-NE). The LLWAS-NE generated alerts are integrated with the radar-based alerts in ITWS to provide Air Traffic Control (ATC) with a comprehensive set of alert information. This study examines the integrated DFW wind shear alerts with emphasis on circumstances in which the detection performance of the TDWR-based wind shear algorithms was poor. Specific detection problems occur in the following situations: when wind shear events over the airport are aligned along a radial to the TDWR, during "non-traditional" wind shear events, when severe signal attenuation occurs during heavy precipitation over the TDWR radar site, and because of excessive TDWR clutter-residue editing over the airport. In all of the cases examined, the LLWAS-NE issued alerts to ATC that would have otherwise gone unreported.
READ LESS

Summary

The Dallas / Fort Worth International Airport (DFW) is one of the four demonstration system sites for the Integrated Terminal Weather System (ITWS). One of the primary benefits of the ITWS is a suite of algorithms that utilize data from the Terminal Doppler Weather Radar (TDWR) to generate wind shear...

READ MORE

Observations of non-traditional wind shear events at the Dallas/Fort Worth International Airport

Published in:
MIT Lincoln Laboratory Report ATC-308
Topic:

Summary

During the past 20 years there has been great success in understanding and detecting microbursts. These "traditional" wind shear events are most prominent in the summer and are characterized by a two-dimensional, divergent outflow associated with precipitation loading from a thunderstorm downdraft or evaporative cooling from high-based rain clouds. Analysis of wind shear loss alerts at the Dallas/Fort Worth International Airport (DFW) from August 1999 through July 2002 reveals that a significant number of the wind shear events were generated by "non-traditional" mechanisms. The "non-traditional" wind shear mechanisms, linear divergence, divergence behind gust fronts, and gravity waves, accounted for one half of the alert events in the period studied. Radar-based algorithms have shown considerable skill in detecting wind shear events. However, the algorithms were developed to identifl features common to the "traditional" events. If the algorithms were modified to detect "non-traditional" wind shear, the corresponding increase in false detections could be unacceptable. Therefore, in this report a new radar-based algorithm is proposed that detects linear divergence, divergence behind gust fronts, and gravity waves for output on the Integrated Terminal Weather System by identifying the radar signatures that are common to these features.
READ LESS

Summary

During the past 20 years there has been great success in understanding and detecting microbursts. These "traditional" wind shear events are most prominent in the summer and are characterized by a two-dimensional, divergent outflow associated with precipitation loading from a thunderstorm downdraft or evaporative cooling from high-based rain clouds. Analysis...

READ MORE

Showing Results

1-3 of 3