Publications
Comparing convective weather avoidance models and aircraft-based data
Summary
Summary
The Convective Weather Avoidance Model (CWAM), developed in collaboration with NASA, translates convective weather information into a Weather Avoidance Field (WAF), to determine if pilots will route around convective regions. The WAF provides an estimate of the probability of pilot deviation around convective weather in en route airspace as a...
Improving convective weather operations in highly congested airspace with the Corridor Integrated Weather System (CIWS)
Summary
Summary
Reducing thunderstorm-related air traffic delays in congested airspace has become a major objective of the FAA, especially given the recent growth in convective delays. In 2000 and 2001, the key new initiative for reducing these convective weather delays was "strategic" traffic flow management (TFM). Users were given 2-, 4-, and...
Corridor integrated weather system operation benefits 2002-2003 : initial estimates of convective weather delay reduction : executive summary
Summary
Summary
The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at...
Corridor Integrated Weather System operation benefits 2002-2003 : initial estimates of convective weather delay reduction
Summary
Summary
The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at...
An examination of wind shear alert integration at the Dallas/Ft. Worth International Airport (DFW)
Summary
Summary
The Dallas / Fort Worth International Airport (DFW) is one of the four demonstration system sites for the Integrated Terminal Weather System (ITWS). One of the primary benefits of the ITWS is a suite of algorithms that utilize data from the Terminal Doppler Weather Radar (TDWR) to generate wind shear...
Reducing severe weather delays in congested airspace with weather decision support for tactical air traffic management
Summary
Summary
Reducing congested airspace delays due to thunderstorms has become a major objective of the FAA due to the recent growth in convective delays. In 2000 and 2001 the key new initiative for reducing these convective weather delays was "strategic" traffic flow management (TFM) at time scales between 2 and 6...
Multi-radar integration to improve en route aviation operations in severe convective weather
Summary
Summary
In this paper, we describe a major new FAA initiative, the Corridor Integrated Weather System (CIWS), to improve convective weather decision support for congested en route airspace and the terminals within that airspace through use of a large, heterogeneous network of weather sensing radars as well as many additional sensors...
En route weather depiction benefits of the NEXRAD vertically integrated liquid water product utilized by the Corridor Integrated Weather System
Summary
Summary
It is demonstrated in this paper that weather depictions in an operational environment based upon VIL provide more meaningful information for en route traffic routing than a BREF product. VIL precipitation proves advantageous in limiting contamination from Anomalous Propagation (AP) ground clutter, biological targets (e.g., birds and insects), and radar...
Operational Experience with TDWR/LLWAS-NE Integration at the Dallas, TX International Airport (DFW)
Summary
Summary
At nine major airports, both the Terminal Doppler Weather Radar (TDWR) and Network Extension of the Low-Level Wind shear Advisory System (LLWAS-NE) data will be used to detect and warn Air Traffic Control (ATC) of dangerous wind shear conditions. The integration of wind shear alerts from the two systems is...
Developing a mosiacked gust front detection algorithm for TRACONS with multiple TDWRS
Summary
Summary
Gust front detection is an important Initial Operational Capability (IOC) of the Integrated Terminal Weather System (ITWS). The Machine Intelligent Gust Front Algorithm (MIGFA) being deployed for ITWS uses multi-dimensional, knowledge-based signal processing techniques to detect and track gust fronts in Terminal Doppler Weather Radar (TDWR) data. Versions of MIGFA...