Publications

Refine Results

(Filters Applied) Clear All

Operational benefits of the Integrated Terminal Weather System (ITWS) at Atlanta

Author:
Published in:
MIT Lincoln Laboratory Report ATC-320

Summary

This report summarizes the results of an initial study to estimate the yearly delay reduction provided by the initial operational capability (IOC) Integrated Terminal Weather System (ITWS) at Hartsfield-Jackson Atlanta International Airport (ATL). Specific objectives of this initial study were to: (1) analyze convective weather operations at ATL to determine major causes of convective weather delay and how those might be modeled quantitatively. (2) provide estimates of the ATL ITWS delay reduction based on the "Decision/Modeling" method using questionnaires and interviews with Atlanta Terminal Radar Approach Control (TRACON) and Air Route Traffic Control Center (ARTCC) operational ITWS users. (3)assess the "reasonableness" of the model-based delay reduction estimates by comparing those savings with estimates of the actual weather-related arrival delays at ATL. In addition, the reasonableness of model-based delay reduction estimates was assessed by determining the average delay savings per ATL flight during times when adverse convective weather is within the coverage of the ATL ITWS. (4)conduct an exploratory study confirming the ATL ITWS delay savings by comparing Aviation System Performance Metrics (ASPM) database delays pre- and post-ITWS at ATL. (5) assess the accuracy of the "downstream" delay model employed in this study by analyzing ASPM data from a major US airline, and (6) make recommendations for follow-on studies of the ITWS delay reduction at Atlanta and other IOC ITWS facilities. [not complete]
READ LESS

Summary

This report summarizes the results of an initial study to estimate the yearly delay reduction provided by the initial operational capability (IOC) Integrated Terminal Weather System (ITWS) at Hartsfield-Jackson Atlanta International Airport (ATL). Specific objectives of this initial study were to: (1) analyze convective weather operations at ATL to determine...

READ MORE

Quantifying convective delay reduction benefits for weather/ATM systems

Published in:
USA/Europe Air Traffic Management Seminar, 27-30 June 2005.

Summary

This paper investigates methods for quantifying convective weather delay reduction benefits for weather/ATM systems and recommends approaches for future assessments. This topic is particularly important at this time because: 1. Convective weather delays continue to be a dominant factor in the overall National Airspace System (NAS) delays, and 2. Benefits quantification and NAS performance assessment have become very important in an era of significant government and airline budget constraints for civil aviation investments. Quantifying convective weather delay benefits for ATM systems has proven to be quite difficult since the delays arise from complicated, highly variable, poorly understood interactions between convective weather and a very complex aviation system. In this paper, we consider key aspects of convective weather disruptions of the aviation system, how the weather severity can be characterized, and discuss practical experience with benefits quantification by a variety of approaches. The paper concludes with recommendations for a methodology to be used in future convective weather delay reduction quantification studies.
READ LESS

Summary

This paper investigates methods for quantifying convective weather delay reduction benefits for weather/ATM systems and recommends approaches for future assessments. This topic is particularly important at this time because: 1. Convective weather delays continue to be a dominant factor in the overall National Airspace System (NAS) delays, and 2. Benefits...

READ MORE

Advanced terminal weather products demonstration in New York

Published in:
Proc. 11th Conf. on Aviation, Range and Aerospace Meteorology, 4-8 October 2004.

Summary

Weather continues to be a significant source of delay for aircraft destined to and departing from the New York metropolitan area, with weather delays through the first half of 2004 reaching levels not seen since 2000. In Allan et al. (2001), it was shown that total arrival delays on days with low ceiling and visibility at Newark Airport (EWR) averaged 210 hours, increasing to an average of 280 hours on days with thunderstorms impacting EWR operations. An analysis of Ground Delay Programs (GDPs) due to weather in the National Airspace System was performed for 2002-20031. Low ceilings, thunderstorms, snow, and wind were all shown to be significant sources of delay (Figure 1). These same weather conditions that lead to GDPs often also lead to holding and long departure delays. In 1998, demonstration of a prototype Integrated Terminal Weather System (ITWS) began in the New York area, helping significantly reduce terminal delays from convection, high surface winds, and vertical wind shear (Allan et al., 2001). In 2002, a new demonstration system, the Corridor Integrated Weather System (CIWS), was introduced at New York Center (ZNY) to help mitigate convective weather delays in the enroute airspace. Substantial benefits were realized from this system and are documented in Robinson et al. (2004). While systems such as ITWS and CIWS have helped significantly with convective weather, much has been learned during the field-testing of these systems about areas where existing research and technology could be leveraged to reduce weather delay in areas that have not been addressed previously. This paper will discuss four experimental products that recently have been or will be fielded in the NY area and how they are expected to benefit the aviation system. Enhancements to the Terminal Convective Weather Forecast (TCWF) address delays in convective weather, snowstorms, and steady rain. The newly fielded Route Availability Planning Tool (RAPT) addresses departure delays in convective weather. The Ceiling and Visibility (C&V) Diagnosis and Prediction Product will address delay due to low ceiling and visibility. The Path-Based Shear Detection (PSD) tool is expected to help both to reduce delays on days with high winds and to indicate regions of potential low altitude turbulence.
READ LESS

Summary

Weather continues to be a significant source of delay for aircraft destined to and departing from the New York metropolitan area, with weather delays through the first half of 2004 reaching levels not seen since 2000. In Allan et al. (2001), it was shown that total arrival delays on days...

READ MORE

Quantifying delay reduction benefits for aviation convective weather decision support systems

Published in:
11th Conf. on Aviation, Range and Aerospace Meteorology, 4-8 October 2004.

Summary

In this paper, we summarize contemporary approaches to quantifying convective weather delay reduction benefits. We outline a program to develop a significantly improved capability that can be used to assess benefits of specific systems. This program may potentially accomplish weather impact normalization for studies of National Airspace System (NAS) performance in handling convective weather. Benefits quantification and NAS performance assessment have become very important topics for the aviation weather community. In an era of significant federal government and airline budget austerity for civil aviation investments, it is essential to quantitatively demonstrate delay reduction benefits of improved weather decision support systems. Major FAA initiatives stress the importance of quantitative system performance metrics that are related to aviation weather. For example, the new FAA Air Traffic Organization (ATO) and the FAA Flight Plan 2004-08 both have quantitative performance metrics that are closely related to reducing convective weather delays. The Flight Plan metrics include: "Improving the percentage of all flights arriving within 15 minutes of schedule at the 35 OEP airports by 7%, as measured from the FY2000-02 baseline, through FY08," and "Maintaining average en route travel times among the eight major metropolitan areas." The ATO metrics include the percentage of on time gate arrivals and the fraction of departures that are delayed greater than 40 minutes. However, these metrics currently do not account for the differences in convective weather severity and changes in the NAS. The dramatic increase in convective season delays in 2004 (Figure 1) due to a combination of severe weather, increases in overall demand, and specific airport issues has demonstrated that one needs to consider these other factors. Approaches to delay reduction quantification that were viewed as successful and valid several years ago are no longer considered to be adequate by either by the FAA investment analysis branch or by the Office of Management and Budget (OMB). The paper proceeds as follows. We first discuss at some length the mechanisms by which convective weather delay occurs in the NAS and highlight challenges in delay reduction assessment. We consider this to be very important since one needs to understand how the system operates if one is to design an effective, accurate performance assessment system. We then consider benefits quantification based on feedback from experienced users of a system. Feedback on "average" benefits from a system at the end of a test period was used to generate delay reduction estimates for the Integrated Terminal Weather System (ITWS) and the Weather and Radar Processor (WARP). This end-of-season interview approach was not viable in highly congested en route airspace. Hence, a new approach was developed for Corridor Integrated Weather System (CIWS) benefits assessment that uses real time observations of product usage during convective weather events coupled with in depth analysis of specific cases. Next, we discuss the problems that arise when one attempts to quantify delay reduction benefits by comparing flight delays before and after the Integrated Terminal Weather System (ITWS) system was deployed at Atlanta Hartsfield International Airport (ATL). This seemingly simple approach has proven very difficult in practice because the convective weather events in the different time periods are virtually never identical and because other aspects of the NAS may also have changed (e.g., user demand, fleet mix, and other systems that impact convective weather delays). It has become clear that one needs a quantitative model for the NAS that would permit adjustment of measured delay data to account at least for the differences in convective weather and changes in user demand (i.e., flight scheduling). The paper concludes with recommendations for measuring near term benefits of various classes of convective weather decision support systems.
READ LESS

Summary

In this paper, we summarize contemporary approaches to quantifying convective weather delay reduction benefits. We outline a program to develop a significantly improved capability that can be used to assess benefits of specific systems. This program may potentially accomplish weather impact normalization for studies of National Airspace System (NAS) performance...

READ MORE

Corridor integrated weather system operation benefits 2002-2003 : initial estimates of convective weather delay reduction : executive summary

Published in:
MIT Lincoln Laboratory Report ATC-313-1

Summary

The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at major en route control centers in the Northeast and Great Lakes corridors and the Air Traffic Control Systems Command Center (ATCSCC) during six multi-day periods in 2003. (Not complete).
READ LESS

Summary

The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at...

READ MORE

Corridor Integrated Weather System operation benefits 2002-2003 : initial estimates of convective weather delay reduction

Published in:
MIT Lincoln Laboratory Report ATC-313

Summary

The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at major en route control centers in the Northeast and Great Lakes corridors and the Air Traffic Control Systems Command Center (ATCSCC) during six multi-day periods in 2003. This first phase of the benefit assessment characterizes major safety and delay reduction benefits and quantifies the delay reduction benefits for two key Traffic Flow Management (TFM) user benefits: "keeping air routes open longer/reopening closed routes soon" and "proactive, efficient reroutes of traffic around storm cells." The overall CIWS delay reduction for these two benefits is 40,000 to 69,000 hours annually with an equivalent monetary value ot $127M to $26M annually. Convective weather delays at most of the major airports in the test domain, normalized by thunderstorm frequency, decreased after new CIWS echo tops and forecast products were introduced. Recommendations are made for near-term, low-cost improvements to the CIWS demonstration system to further increase the operational benefits.
READ LESS

Summary

The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at...

READ MORE

Reducing severe weather delays in congested airspace with weather decision support for tactical air traffic management

Published in:
5th Eurocontrol/DAA ATM R&D Seminar, 23-27 June 2003.

Summary

Reducing congested airspace delays due to thunderstorms has become a major objective of the FAA due to the recent growth in convective delays. In 2000 and 2001 the key new initiative for reducing these convective weather delays was "strategic" traffic flow management (TFM) at time scales between 2 and 6 hours in advance using collaborative weather forecasts and routing strategy development. This "strategic" approach experienced difficulties in a large fraction of the weather events because it was not possible to forecast convective storm impacts on routes and capacities accurately enough to accomplish effective traffic flow management. Hence, we proposed in 2001 that there needed to be much greater emphasis on tactical air traffic management at time scales where it would be possible to generate much more accurate convective weather forecasts. In this paper, we describe initial operational results in the very highly congested Great Lakes and Northeast Corridors using weather products from the ongoing Corridor Integrated Weather System (CIWS) concept exploration. Key new capabilities provided by this system include very high update rates (to support tactical air traffic control), much improved echo-tops information, and fully automatic 2-hour convective forecasts using the latest "scale separation" storm tracking technologies. Displays were provided at major terminal areas, en route centers in the corridors, and the FAA Command Center. Substantial reduction in delays has been achieved mostly through weather product usage at the shorter time scales. Quantifying the achieved benefits for this class of products have raised major questions about the conceptual framework for traffic flow management in these congested corridors that must be addressed in the development of air traffic management systems to utilize the weather products.
READ LESS

Summary

Reducing congested airspace delays due to thunderstorms has become a major objective of the FAA due to the recent growth in convective delays. In 2000 and 2001 the key new initiative for reducing these convective weather delays was "strategic" traffic flow management (TFM) at time scales between 2 and 6...

READ MORE

Route selection decision support in convective weather: a case study of the effects of weather and operational assumptions on departure throughput

Published in:
5th Eurocontrol/FAA ATM R&D Seminar, 23-27 2003.

Summary

This paper presents a detailed study of a convective weather event affecting the northeastern United States on 19 April 2002: its impacts on departure throughput, the response of traffic managers and an analysis of the potential effects of decision support on system performance. We compare actual departure throughput to what may have been achieved using the Route Availability Planning Tool (RAPT), a prototype decision support tool. We examine two questions: Can decision support identify opportunities to release departures that were missed during the event? How is route selection guidance affected by the operational model incorporated into the decision support tool? By "operational model", we mean three things: the choice of weather forecast information used to define hazards (precipitation, echo tops, etc.), the model for how airspace is used (route definition and allocation) and the assessment of the likelihood that a given route is passable. We focus our analysis on the operational model only; we eliminate weather forecast uncertainty as a factor in the analysis by running RAPT using the actual observed weather as the forecast ('perfect' forecast). Results show that decision support based on perfect forecasts is sensitive to all three elements of the operational model. The sensitivity to weather metrics became evident when we compared decision support based upon perfect forecasts of level 3 vertically integrated liquid (VIL) to that based upon VIL plus storm echo tops. Traffic managers were at times able to move more aircraft by abandoning nominal routing than if they had used nominal routing with perfect weather information. The assessment of route availability will, at times, be ambiguous; different interpretations of that assessment lead to decisions that result in significant differences in departure throughput. These results suggest that for traffic flow management tools, a realistic operational model may be at least as important as the frequently discussed problem of weather forecast uncertainty.
READ LESS

Summary

This paper presents a detailed study of a convective weather event affecting the northeastern United States on 19 April 2002: its impacts on departure throughput, the response of traffic managers and an analysis of the potential effects of decision support on system performance. We compare actual departure throughput to what...

READ MORE

An analysis of the impacts of wake vortex restrictions at LGA

Published in:
Project Report ATC-305, MIT Lincoln Laboratory

Summary

Wake vortex restrictions at New York's La Guardia airport cause a significant reduction in capacity when aircraft land on runway 22 and depart on runway 31. This report presents an analysis of the annual delay cost at LGA associated with the wake vortex restrictions. We find that the delay due to these restrictions exceeds 4000 hours annually, and that these restrictions cause a significant workload increase to controllers at both La Guardia and the New York TRACON. If traffic levels were to increase 10% from their February 2001 levels, the corresponding increase in delay due to the wake vortex restrictions would rise from 30 hours a day to over 400 hours a day in this runway configuration. It is also found that for a meaningful increase in passenger capacity in this runway configuration to be as demand grows, restrictions must be reduced from their current levels. If the percentage of heavy/757's doubled at LGA, there would be no increase in passenger capacity while daily delays in this runway configuration due to current wake vortex separation standards would increase by 250 hours.
READ LESS

Summary

Wake vortex restrictions at New York's La Guardia airport cause a significant reduction in capacity when aircraft land on runway 22 and depart on runway 31. This report presents an analysis of the annual delay cost at LGA associated with the wake vortex restrictions. We find that the delay due...

READ MORE

An analysis of the impacts of wake vortex restrictions at LGA

Author:
Published in:
MIT Lincoln Laboratory Report ATC-305

Summary

Wake vortex restrictions at New York's La Guardia airport cause a significant reduction in capacity when aircraft land on runway 22 and depart on runway 31. This report presents an analysis of the annual delay cost at LGA associated with the wake vortex restrictions. We find that the delay due to these restrictions exceeds 4000 hours annually, and that these restrictions cause a significant workload increase to controllers at both La Guardia and the New York TRACON. If traffic levels were to increase 10% from their February 2001 levels, the corresponding increase in delay due to the wake vortex restrictions would rise from 30 hours a day to over 400 hours a day in this runway configuration. It is also found that for a meaningful increase in passenger capacity in this runway configuration to be as demand grows, restrictions must be reduced from their current levels. If the percentage of heavy/757's doubled at LGA, there would be no increase in passenger capacity while daily delays in this runway configuration due to current wake vortex separation standards would increase by 250 hours.
READ LESS

Summary

Wake vortex restrictions at New York's La Guardia airport cause a significant reduction in capacity when aircraft land on runway 22 and depart on runway 31. This report presents an analysis of the annual delay cost at LGA associated with the wake vortex restrictions. We find that the delay due...

READ MORE

Showing Results

1-10 of 13