Publications

Refine Results

(Filters Applied) Clear All

Preliminary UAS Weather Research Roadmap(1.51 MB)

Date:
November 3, 2017
Published in:
Project Report ATC-438, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

A companion Lincoln Laboratory report (ATC-437, “Preliminary Weather Information Gaps for UAS Operations”) identified initial gaps in the ability of current weather products to meet the needs of UAS operations. Building off of that work, this report summarizes the development of a proposed initial roadmap for research to fill the gaps that were identified.
READ LESS

Summary

A companion Lincoln Laboratory report (ATC-437, “Preliminary Weather Information Gaps for UAS Operations”) identified initial gaps in the ability of current weather products to meet the needs of UAS operations. Building off of that work, this report summarizes the development of a proposed initial roadmap for research to fill the...
READ MORE

Preliminary Weather Information Gap Analysis for UAS Operations(4.88 MB)

Date:
November 2, 2017
Published in:
Project Report ATC-437, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report documents a preliminary quick-look identification and assessment of gaps in current weather decision support for UAS operations.
READ LESS

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report...
READ MORE

Delay causality and reduction at the New York City airports using terminal weather information systems

Date:
February 16, 2001
Published in:
Project Report ATC-291, MIT Lincoln Laboratory
Type:
Project Report
Topic:

Summary

Adverse weather accounts for the bulk of the aviation delays at the major New York City airports. In this report, we quantify: 1. Aviation delay reduction with an Integrated Terminal Weather System (ITWS) that incorporates the 30-60 minute predictions of convective storms generated by the Terminal Convective Weather Forecast (TCWF) algorithm, 2. Principal causes of aviation delays with the ITWS in operation, and 3. The extent to which the current delays are "avoidable". We find that improved decision making by the New York FAA users of ITWS provides an annual delay reduction of over 49,000 hours per year with a monetary value of over $150,000,000 per year. Convective weather was found to be the leading contributor to delays at Newark International Airport (EWR) between September 1998 and August 2000. It was found that 40% of the arrival delay in this study occurred in association with delay days characterized by convective weather both within and at considerable distances from the New York terminal area. Of the remaining delay, 27% occurred on days characterized by low ceiling/visibility conditions, while 16% occurred on fair weather days with high surface winds. We also concluded that many of the delays which occur with the current ITWS, over $1,500,000 in one case, could be avoided if the ITWS were extended to provide: 1. Predictions of thunderstorm decay, and 2. Predictions of the onset and ending of capacity limiting events such as low ceilings or high surface winds. These delay causality results are very important for studies of the effectiveness of changes made to the U.S. aviation system to reduce delays at airports such as Newark as well as for prioritizing FAA research and development expenditures.
READ LESS

Summary

Adverse weather accounts for the bulk of the aviation delays at the major New York City airports. In this report, we quantify: 1. Aviation delay reduction with an Integrated Terminal Weather System (ITWS) that incorporates the 30-60 minute predictions of convective storms generated by the Terminal Convective Weather Forecast (TCWF)...
READ MORE

Showing Results

1-3 of 3