Publications

Refine Results

(Filters Applied) Clear All

Shared information access services in SWIM segment 2: an architectural assessment

Published in:
MIT Lincoln Laboratory Report ATC-383

Summary

The System Wide Information Management (SWIM) program is a foundational program for the Federal Aviation Administration?s (FAA) Next Generation Air Transportation System (NextGen) initiative, with a goal of providing a common, scalable information management infrastructure. Though some benefits were realized in SWIM Segment 1 from the use of common software infrastructure components (i.e., the Progress FUSE software suite), the actual reuse of service interfaces was limited. The focus of SWIM Segment 2 is increasingly on shared services, with a goal of improved interoperability as well as increased software reuse. This report focuses on shared data access services, based on lessons learned in the SWIM Segment 1 Corridor Integrated Weather System (CIWS) SWIM Implementing Program (SIP) activity, the NextGen Network-Enabled Weather (NNEW) program, and a number of other Laboratory net-centric programs. The applicability of other information sharing architectures, such as the Web and content delivery overlay networks, to SWIM is also assessed. Based on this assessment, a number of recommendations are suggested to facilitate the development of shared services that are flexible enough to respond quickly to evolving NextGen requirements, while at the same time minimizing the overall SWIM software "footprint."
READ LESS

Summary

The System Wide Information Management (SWIM) program is a foundational program for the Federal Aviation Administration?s (FAA) Next Generation Air Transportation System (NextGen) initiative, with a goal of providing a common, scalable information management infrastructure. Though some benefits were realized in SWIM Segment 1 from the use of common software...

READ MORE

European and U.S. perspectives on the sharing and integration of weather information into ATM decisions

Published in:
ATM2011, 9th USA/Europe Air Traffic Management Research and Development Seminar, 14 June 2011.

Summary

Weather is a major source of operational air traffic delays, accounting for 25 to 70 percent of all delays dependent of the geographical region. In today's Air Traffic Management (ATM) systems, a variety of weather information is available to help tactical and strategic planners better anticipate weather events that impact airspace capacity. Regretfully, the information is not always shared amongst all the stakeholders involved or well integrated into the existing ATM environment. This paper describes the high-level concepts for an improved sharing and integration or weather information into Air Traffic Management Decisions, as well as the current state and anticipated capabilities or the underlying information Management infrastructure.
READ LESS

Summary

Weather is a major source of operational air traffic delays, accounting for 25 to 70 percent of all delays dependent of the geographical region. In today's Air Traffic Management (ATM) systems, a variety of weather information is available to help tactical and strategic planners better anticipate weather events that impact...

READ MORE

NextGen Weather Processor architecture study

Published in:
MIT Lincoln Laboratory Report ATC-361

Summary

The long-term objectives for the NextGen Weather Processor (NWP) include consolidation of today's multiple weather systems, incorporation of recent and emerging Federal Aviation Administration (FAA) infrastructure (Federal Telecommunications Infrastructure (FTI), System Wide Information Management (SWIM), NextGen Network-Enabled Weather (NNEW)), leveraging National Oceanic and Atmospheric Administraiton (NOAA) and/or commercial weather resources, and providing a solid development and runn-time platform for advanced aviation weather capabilities. These objectives are to be achieved in a staged fashion, ideally with new components coming on-line in time to replace existing capabilities prior to their end-of-life dates. As part of NWP Segment 1, a number of alternative implementations for the NWP as it might exist in the 2013 time frame have been proposed. This report examines the alternatives form a top-down technical perspective, assessing how well each maps to a high-level NWP architecture consistent with the long-term NextGen information sharing vision. Tehcnical challenges and opportunities for weather product improvements associated with each alternative are discussed. Additional alternatives consistent with the high-level NWP architecture, as well as a number of suggested follow-on analysis efforts are also presented.
READ LESS

Summary

The long-term objectives for the NextGen Weather Processor (NWP) include consolidation of today's multiple weather systems, incorporation of recent and emerging Federal Aviation Administration (FAA) infrastructure (Federal Telecommunications Infrastructure (FTI), System Wide Information Management (SWIM), NextGen Network-Enabled Weather (NNEW)), leveraging National Oceanic and Atmospheric Administraiton (NOAA) and/or commercial weather resources...

READ MORE

Roadmap for weather integration into Traffic Flow Management Modernization (TFM-M)

Published in:
MIT Lincoln Laboratory Report ATC-347

Summary

This report provides recommendations for aligning new Collaborative Air Traffic Management Technologies (CATM-T) with evolving aviation weather products to improve NAS efficiency during adverse (especially severe) weather conditions. Key gaps identified include 1. Improving or developing pilot convective storm avoidance models as well as models for route blockage and capacity in severe weather is necessary for automated congestion prediction and resolution. 2. Forecasts need to characterize uncertainty that can be used by CATM tools and, explicitly forecast key parameters needed for translation of weather products to capacity impacts. 3. Time based flow management will require substantial progress in both the translation modeling and in predicting appropriate storm avoidance trajectories. Near term efforts should focus on integration of the Traffic Management Advisor (TMA) with contemporary severe weather products such as the Corridor Integrated Weather System (CIWS). 4. Human factors studies on product design to improve individual decision making, improved collaborative decision making in "difficult" situations, and the use of probabilistic products are also essential. 5. Studies need to be carried out to determine how well en route and terminal capacity currently is being utilized during adverse weather events so as to identify the highest priority areas for integrated weather-CATM system development.
READ LESS

Summary

This report provides recommendations for aligning new Collaborative Air Traffic Management Technologies (CATM-T) with evolving aviation weather products to improve NAS efficiency during adverse (especially severe) weather conditions. Key gaps identified include 1. Improving or developing pilot convective storm avoidance models as well as models for route blockage and capacity...

READ MORE

Air traffic management decision support during convective weather

Published in:
Lincoln Laboratory Journal, Vol. 16, No. 2, June 2007, pp. 263-276.

Summary

Flight delays caused by thunderstorms are a significant and growing problem for airlines and the flying public. Thunderstorms disrupt the structured, preplanned flight routing and control process that is used to handle dense air traffic streams in congested airspace. Today's coping strategies are developed by traffic flow management (TFM) specialists who interpret weather measurements and forecasts to develop delay and rerouting strategies. The effectiveness of these strategies is limited by the lack of quantitative models for the capacity impacts of thunderstorms, and by the difficulty of developing and executing timely response strategies during rapidly changing convective weather. In this article, we describe initial work to develop more effective response strategies. We first review insights gained during operational testing of a simple but highly effective Route Availability Planning Tool that can significantly reduce convective-weather induced departure delays at congested airports. We then discuss work to develop core technical capabilities and applications that address broader TFM problems, including en route congestion. Objective models for airspace capacity reductions caused by thunderstorms are discussed, as is an associated scheduling algorithm that exploits the capacity estimates to develop broad-area TFM strategies that minimize delay. We conclude by discussing candidate real-time applications and airspace system performance analysis that is enabled by our weather-capacity models and optimal scheduling algorithm.
READ LESS

Summary

Flight delays caused by thunderstorms are a significant and growing problem for airlines and the flying public. Thunderstorms disrupt the structured, preplanned flight routing and control process that is used to handle dense air traffic streams in congested airspace. Today's coping strategies are developed by traffic flow management (TFM) specialists...

READ MORE

Enhancement to Terminal Doppler Weather Radar to improve aviation weather services

Published in:
10th Conf. on Aviation, Range, and Aerospace Meteorology, 13-16 May 2002, pp. 28-31.

Summary

This paper has described work underway to enhance the TDWRs capability to provide wind shear detection services in challenging conditions, and to provide a flexible platform with COTS hardware that would support future improvements. A Radar Data Acquisition (RDA) system retrofit will upgrade the transmitter, receiver and digital signal processing subsystems of the radar to improve the quality of the reflectivity and Doppler imagery generated by the system and to extend its instrumented range. Algorithms have been described for achieving improved rejection of ground clutter and range-folded weather echoes, and reduction of Doppler velocity aliasing. An open COTS-based processing architecture was presented for the TDWR RDA retrofit, and a test program was outlined that is commencing in Oklahoma in the spring of 2002.
READ LESS

Summary

This paper has described work underway to enhance the TDWRs capability to provide wind shear detection services in challenging conditions, and to provide a flexible platform with COTS hardware that would support future improvements. A Radar Data Acquisition (RDA) system retrofit will upgrade the transmitter, receiver and digital signal processing...

READ MORE

WSP utility libraries

Published in:
MIT Lincoln Laboratory Report ATC-284

Summary

The ASR-9 Weather Systems Processor (WSP) augments the weather detection capability of existing ASR-9 radars to include low-level wind shear warnings, storm cell tracking and prediction, and improved immunity to false weather echoes due to anomalous propagation (AP). To economically develop and field an operational system at the 34 WSP sites, the FAA is pursuing a strategy that leverages the software written during the 10-year R&D phase of the project. To that end, the software developed at Lincoln Laboratory has been "hardened" to ensure reliable, continuous operation, and has been ported to a "Phase II" prototype built around the latest generation of COTS hardware. A significant number of the hardened software modules are being used in the production version of the WSP with only minor modifications. Included as part of the software are a number of lower-level utility libraries to provide basic services such as memory management and network communication. This document provides a detailed description of these common utility libraries.
READ LESS

Summary

The ASR-9 Weather Systems Processor (WSP) augments the weather detection capability of existing ASR-9 radars to include low-level wind shear warnings, storm cell tracking and prediction, and improved immunity to false weather echoes due to anomalous propagation (AP). To economically develop and field an operational system at the 34 WSP...

READ MORE

ASR-9 weather systems processor software overview

Published in:
MIT Lincoln Laboratory Report ATC-264

Summary

The ASR-9 Weather Systems Processor (WSP) augments the weather detection capability of existing ASR-9 radars to include low-level wind shear warnings, storm cell tracking and prediction, and improved immunity to false weather echoes due to anomalous propagation (AP). To economically develop and field an operational system at the 34 WSP sites, the FAA is pursuing a strategy that leverages the software written during the 10-year R&D phase of the project. To that end, the software developed at Lincoln Laboratory has been "hardened" to ensure reliable, continuous operation, and has been ported to a "Phase II" prototype built around the latest generation of COTS hardware. A significant number of the hardened software modules are being used in the production version of the WSP with only minor modifications. This document provides a high-level description of these software modules, with an emphasis on how the modules fit together in the WSP system. Descriptions of the hardware environment in which the software executes are also provided.
READ LESS

Summary

The ASR-9 Weather Systems Processor (WSP) augments the weather detection capability of existing ASR-9 radars to include low-level wind shear warnings, storm cell tracking and prediction, and improved immunity to false weather echoes due to anomalous propagation (AP). To economically develop and field an operational system at the 34 WSP...

READ MORE

A 9PAC system and application programmer's guide

Published in:
MIT Lincoln Laboratory Report ATC-267

Summary

The ASR-9 Processor Augmentation Card (9PAC) is a custom processing card that provides the ASR-9 system with increased beacon and radar processing performance. This paper describes the system and application software that executes on the prototype board, with an emphasis on the interaction between software modules. The application software on the 9PAC determines the position of radar and beacon target reports, replacing software that previously ran on the ASR-9 Array Signal Processor (ASP). The software is organized as a set of cooperating tasks executing under the control of a real-time operating system, PAC/OS, which provides all the services typical of an embedded kernel such as interrupt handling, pre-emptive multitasking, queues, signals, semaphores, mailboxes, and memory management. The deployment of 9PAC will occur in two phases. The Phase I application replaces only the beacon target detector (BTD) and radar/beacon target merge (MRG) functions of the ASP. The Phase I application consists of two executable programs since Phase I uses only two of the C44 processors on the 9PAC. One program, the housekeeping processor, is responsible for all I/O functions and performs the radar/beacon merge operation. The second progam, the beacon processor, is dedicated to processing the raw beacon replies and generating beacon targets which are then returned to the first processor for the merge operation. The Phase II application consists of three executable programs, one for each of the C44 processors on the 9PAC and performs much of the Phase I functionality and adds primary radar processing. The intent of this paper is to provide the 9PAC software support personnel with sufficient information to implement future enhancements without unintentionally compromising some aspect of the overall system.
READ LESS

Summary

The ASR-9 Processor Augmentation Card (9PAC) is a custom processing card that provides the ASR-9 system with increased beacon and radar processing performance. This paper describes the system and application software that executes on the prototype board, with an emphasis on the interaction between software modules. The application software on...

READ MORE

Description of radar correlation and interpolation algorithms for the ASR-9 Processor Augmentation Card (9-PAC)

Published in:
MIT Lincoln Laboratory Report ATC-236

Summary

MIT Lincoln Laboratory, under sponsorship from the Federal Aviation Adminstration (FAA), is conducting a program to replace/upgrade the existing ASR-9 array signal processor (ASP) and associated algorithms to improve performance and future maintainability. The ASR-9 processor augmentation card (9-PAC) replaces the ASP four-board set with a single card containing three TMS320c40 processors and 32 Megabytes of memory. The resulting increase in both processing speed and memory size allows more sophisticated beacon and radar processing algorithms to be implemented. The majority of the improvement to the radar correlation and interpolation (C&I) function lies in the area of geocensoring and adaptive thresholding, where the larger memory capacity of the 9-PAC allows more detailed maps to be maintained. A dynamic road map mechanism has been implemented to reduce the need for manual tuning of the system when the radars are first installed or when new road construction occurs. The map is twice the resolution of the original geocensormap, resulting in a decrease in total area desensitized to radar-only targets. In addition, the new geocensor mechanism makes use of target amplitude information, allowing aircraft with amplitudes significantly greater than the road traffic returns at a particular cell to pass through uncensored. The adaptive thresholding cell geometry has been modified so that adaptive map cells now overlap one another, eliminating the false target breakthrough that occurs in the present system when regions of false alarms due to birds or weather transition from one cell to the next. The entire C & I function has been recorded in a high-level language (ANSI-C), allowing it to be easily ported between platforms and better facilitating off-line analysis.
READ LESS

Summary

MIT Lincoln Laboratory, under sponsorship from the Federal Aviation Adminstration (FAA), is conducting a program to replace/upgrade the existing ASR-9 array signal processor (ASP) and associated algorithms to improve performance and future maintainability. The ASR-9 processor augmentation card (9-PAC) replaces the ASP four-board set with a single card containing three...

READ MORE

Showing Results

1-10 of 12