Publications

Refine Results

(Filters Applied) Clear All

Evaluation of weather impact models in departure management decision support: operational performance of the Route Availability Planning Tool (RAPT) prototype

Published in:
13th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 20-24 January 2008.

Summary

In this paper, the revised RAPT algorithm and display are described and evaluated. The fidelity of the RAPT operational model is assessed by comparing RAPT departure status with observed departure flows (i.e., trajectories, weather avoidance maneuvers and storm penetrations) on several days when convective weather SWAPs were in effect in New York. Real-time in-situ observations at RAPT facilities (described in a companion paper at this conference; Robinson, 2008), user feedback from RAPT playbacks and the REPEAT web site are used to support this post-event evaluation. For example, real time observations provide the time and operational rationale for a specific departure route closure identified in the traffic flow analysis. This information is necessary to identify closures or flow restrictions that are the result of factors outside of the current RAPT algorithm domain (e.g., traffic restrictions due to volume, downstream congestion, etc.). Real time observations are also used to identify specific times when critical, weather-related operational decisions were made. The RAPT guidance at these critical decision points is analyzed to determine if RAPT provided information that enabled (or could have enabled, had it been used) more timely or effective decisions. The effect of forecast uncertainty on RAPT performance is also examined, particularly in convective weather situations where the location, severity and operational impact were difficult to predict. Strategies that mitigated risks associated with forecast uncertainty are presented. These include the use of additional information provided in the RAPT display, such as echo top heights encountered along the departure route, to confirm or modify RAPT guidance and the consideration of the departure status of two or more adjacent routes to 'average out' variations in the departure status timelines.
READ LESS

Summary

In this paper, the revised RAPT algorithm and display are described and evaluated. The fidelity of the RAPT operational model is assessed by comparing RAPT departure status with observed departure flows (i.e., trajectories, weather avoidance maneuvers and storm penetrations) on several days when convective weather SWAPs were in effect in...

READ MORE

SFO marine stratus forecast system documentation

Summary

San Francisco International Airport (SFO) experiences frequent low ceiling conditions during the summer season due to marine stratus clouds. Stratus in the approach zone prevents dual approaches to the airport??s closely spaced parallel runways, effectively reducing arrival capacity by half. The stratus typically behaves on a daily cycle, with dissipation occurring during the hours following sunrise. Often the low ceiling conditions persist throughout the morning hours and interfere with the high rate of air traffic scheduled into SFO from mid-morning to early afternoon. Air traffic managers require accurate forecasts of clearing time to efficiently administer Ground Delay Programs (GDPs) to match the rate of arriving aircraft with expected capacity. The San Francisco Marine Stratus Forecast System was developed as a tool for anticipating the time of stratus clearing. The system relies on field-deployed sensors as well as routinely available regional surface observations and satellite data from the Geostationary Operational Environmental Satellite (GOES-West). Data are collected, processed, and input to a suite of forecast models to predict the time that the approach zone will be sufficiently clear to perform dual approaches. Data observations and model forecasts are delivered to users on an interactive display accessible via the Internet. The system prototype was developed under the sponsorship of the FAA Aviation Weather Research Program (AWRP). MIT Lincoln Laboratory served as technical lead for the project, in collaboration with San Jose State University, the University of Quebec at Montreal, and the Center Weather Service Unit (CWSU) at the Oakland Air Route Traffic Control Center (ARTCC). The National Weather Service (NWS), under the direction of the NWS Forecast Office in Monterey, assumed responsibility for operation and maintenance of the system following technical transfer in 2004. This document was compiled as a resource to support continuing system operation and maintenance.
READ LESS

Summary

San Francisco International Airport (SFO) experiences frequent low ceiling conditions during the summer season due to marine stratus clouds. Stratus in the approach zone prevents dual approaches to the airport??s closely spaced parallel runways, effectively reducing arrival capacity by half. The stratus typically behaves on a daily cycle, with dissipation...

READ MORE

Showing Results

1-2 of 2