Publications

Refine Results

(Filters Applied) Clear All

Comparison of two-talker attention decoding from EEG with nonlinear neural networks and linear methods

Summary

Auditory attention decoding (AAD) through a brain-computer interface has had a flowering of developments since it was first introduced by Mesgarani and Chang (2012) using electrocorticograph recordings. AAD has been pursued for its potential application to hearing-aid design in which an attention-guided algorithm selects, from multiple competing acoustic sources, which should be enhanced for the listener and which should be suppressed. Traditionally, researchers have separated the AAD problem into two stages: reconstruction of a representation of the attended audio from neural signals, followed by determining the similarity between the candidate audio streams and the reconstruction. Here, we compare the traditional two-stage approach with a novel neural-network architecture that subsumes the explicit similarity step. We compare this new architecture against linear and non-linear (neural-network) baselines using both wet and dry electroencephalogram (EEG) systems. Our results indicate that the new architecture outperforms the baseline linear stimulus-reconstruction method, improving decoding accuracy from 66% to 81% using wet EEG and from 59% to 87% for dry EEG. Also of note was the finding that the dry EEG system can deliver comparable or even better results than the wet, despite the latter having one third as many EEG channels as the former. The 11-subject, wet-electrode AAD dataset for two competing, co-located talkers, the 11-subject, dry-electrode AAD dataset, and our software are available for further validation, experimentation, and modification.
READ LESS

Summary

Auditory attention decoding (AAD) through a brain-computer interface has had a flowering of developments since it was first introduced by Mesgarani and Chang (2012) using electrocorticograph recordings. AAD has been pursued for its potential application to hearing-aid design in which an attention-guided algorithm selects, from multiple competing acoustic sources, which...

READ MORE

Assessing functional neural connectivity as an indicator of cognitive performance

Published in:
5th NIPS Workshop on Machine Learning and Interpretation in Neuroimaging, MLINI 2015, 11-12 December 2015.

Summary

Studies in recent years have demonstrated that neural organization and structure impact an individual's ability to perform a given task. Specifically, individuals with greater neural efficiency have been shown to outperform those with less organized functional structure. In this work, we compare the predictive ability of properties of neural connectivity on a working memory task. We provide two novel approaches for characterizing functional network connectivity from electroencephalography (EEG), and compare these features to the average power across frequency bands in EEG channels. Our first novel approach represents functional connectivity structure through the distribution of eigenvalues making up channel coherence matrices in multiple frequency bands. Our second approach creates a connectivity network at each frequency band, and assesses variability in average path lengths of connected components and degree across the network. Failures in digit and sentence recall on single trials are detected using a Gaussian classifier for each feature set, at each frequency band. The classifier results are then fused across frequency bands, with the resulting detection performance summarized using the area under the receiver operating characteristic curve (AUC) statistic. Fused AUC results of 0.63/0.58/0.61 for digit recall failure and 0.58/0.59/0.54 for sentence recall failure are obtained from the connectivity structure, graph variability, and channel power features respectively.
READ LESS

Summary

Studies in recent years have demonstrated that neural organization and structure impact an individual's ability to perform a given task. Specifically, individuals with greater neural efficiency have been shown to outperform those with less organized functional structure. In this work, we compare the predictive ability of properties of neural connectivity...

READ MORE

Showing Results

1-2 of 2