Publications

Refine Results

(Filters Applied) Clear All

Dynamic photoacoustic spectroscopy for trace gas detection

Published in:
Appl. Phys. Lett., Vol. 101, No. 18, 29 October 2012, 184103.

Summary

We present a method of photoacoustic spectroscopy in which a laser beam tuned to an absorption feature of a gas is swept through its plume at the speed of sound. The resulting coherent addition of acoustic waves leads to an amplification of the signal without the need for a resonant chamber, thus enhancing the ability to remotely sense the gas. We demonstrate the concept using a tunable CO2 laser and SF6 gas in conjunction with a microphone. Sound pressure levels of 83 dB (relative to 20 uPa) are generated from a 15-ppm plume.
READ LESS

Summary

We present a method of photoacoustic spectroscopy in which a laser beam tuned to an absorption feature of a gas is swept through its plume at the speed of sound. The resulting coherent addition of acoustic waves leads to an amplification of the signal without the need for a resonant...

READ MORE

Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence

Published in:
Opt. Express, Vol. 19, No. 19, 12 September 2011, pp. 18671-18677.

Summary

High-sensitivity (ng/cm2) optical detection of the explosive 2,4,6- trinitrotoluene (TNT) is demonstrated using photodissociation followed by laser-induced fluorescence (PD-LIF). Detection occurs rapidly, within 6 laser pulses (~7 ns each) at a range of 15 cm. Dropcasting is used to create calibrated samples covering a wide range of TNT concentrations; and a correspondence between fractional area covered by TNT and PD-LIF signal strength is observed. Dropcast data are compared to that of an actual fingerprint. These results demonstrate that PD-LIF could be a viable means of rapidly and remotely scanning surfaces for trace explosive residues.
READ LESS

Summary

High-sensitivity (ng/cm2) optical detection of the explosive 2,4,6- trinitrotoluene (TNT) is demonstrated using photodissociation followed by laser-induced fluorescence (PD-LIF). Detection occurs rapidly, within 6 laser pulses (~7 ns each) at a range of 15 cm. Dropcasting is used to create calibrated samples covering a wide range of TNT concentrations; and...

READ MORE

Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence

Published in:
Opt. Express, Vol. 18, No. 6, 15 March 2010, pp. 5399-5406.

Summary

Noncontact detection of the homemade explosive constituents urea nitrate, nitromethane and ammonium nitrate is achieved using photodissociation followed by laser-induced fluorescence (PD-LIF). Our technique utilizes a single ultraviolet laser pulse (~7 ns) to vaporize and photodissociate the condensed-phase materials, and then to detect the resulting vibrationally-excited NO fragments via laser-induced fluorescence. PD-LIF excitation and emission spectra indicate the creation of NO in vibrationally-excited states with significant rotational energy, useful for low-background detection of the parent compound. The results for homemade explosives are compared to one another and 2,6- dinitrotoluene, a component present in many military explosives.
READ LESS

Summary

Noncontact detection of the homemade explosive constituents urea nitrate, nitromethane and ammonium nitrate is achieved using photodissociation followed by laser-induced fluorescence (PD-LIF). Our technique utilizes a single ultraviolet laser pulse (~7 ns) to vaporize and photodissociate the condensed-phase materials, and then to detect the resulting vibrationally-excited NO fragments via laser-induced...

READ MORE

Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations

Published in:
26th Army Science Conf., 1 December 2008 (Anal. Bioanal. Chem., Vol. 395, pp. 357-369).

Summary

A campaign to measure the amount of trace explosive residues in an operational military environment was conducted on May 27?31, 2007, at the National Training Center at Fort Irwin, CA, USA. The objectives of this campaign were to develop the methods needed to collect and analyze samples from tactical military settings, to use the data obtained to determine what the trace explosive signatures suggest about the potential capabilities of chemical-based means to detect IEDs, and, finally, to present a framework whereby a sound understanding of the signature science can be used to guide development of new sensing technologies and sensor concepts of operation. Through our use of combined background and threat signature data, we have performed statistical analyses to estimate upper limits of notional sensor performance that is limited only by the spatial correlation of the signature chemicals to the threats of interest.
READ LESS

Summary

A campaign to measure the amount of trace explosive residues in an operational military environment was conducted on May 27?31, 2007, at the National Training Center at Fort Irwin, CA, USA. The objectives of this campaign were to develop the methods needed to collect and analyze samples from tactical military...

READ MORE

A novel method for remotely detecting trace explosives

Published in:
Lincoln Laboratory Journal, Vol. 17, No. 2, December 2008, pp. 27-40.

Summary

The development of a technique with the ability to detect trace quantities of explosives at a distance is of critical importance. In numerous situations when explosive devices are prepared, transported, or otherwise handled, quantifiable amounts of the explosive material end up on surfaces. Rapid detection of these chemical residues in a noninvasive standoff manner would serve as an indicator for attempts at concealed assembly or transport of explosive materials and devices. We are investigating the use of a fluorescence-based technique to achieve the necessary detection sensitivity.
READ LESS

Summary

The development of a technique with the ability to detect trace quantities of explosives at a distance is of critical importance. In numerous situations when explosive devices are prepared, transported, or otherwise handled, quantifiable amounts of the explosive material end up on surfaces. Rapid detection of these chemical residues in...

READ MORE

Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation

Published in:
Appl. Opt., Vol. 47, No. 31, 1 November 2008, pp. 5767-5776.

Summary

We investigate the remote detection of explosives via a technique that vaporizes and photodissociates the condensed-phase material and detects the resulting vibrationally excited NO fragments via laser-induced fluorescence. The technique utilizes a single 7 ns pulse of a tunable laser near 236:2nm to perform these multiple processes. The resulting blue-shifted fluorescence (226 nm) is detected using a photomultiplier and narrowband filter that strongly block the scatter of the pump laser off the solid media while passing the shorter wavelength photons. Various nitro-bearing compounds, including 2,6-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), and hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) were detected with a signal-to-noise of 25 dB. The effects of laser fluence, wavelength, and sample morphology were examined.
READ LESS

Summary

We investigate the remote detection of explosives via a technique that vaporizes and photodissociates the condensed-phase material and detects the resulting vibrationally excited NO fragments via laser-induced fluorescence. The technique utilizes a single 7 ns pulse of a tunable laser near 236:2nm to perform these multiple processes. The resulting blue-shifted...

READ MORE

Experimental demonstration of remote optical detection of trace explosives.

Published in:
SPIE Vol. 6954, Chemical, Biologica, Radiological, Nuclear and Explosives (CBRNE) Sensing IX, 18-20 March 2008, 695407.

Summary

MIT Lincoln Laboratory has developed a concept that could enable remote (10s of meters) detection of trace explosives' residues via a field-portable laser system. The technique relies upon laser-induced photodissociation of nitro-bearing explosives into vibrationally excited nitric oxide (NO) fragments. Subsequent optical probing of the first vibrationally excited state at 236 nm yields narrowband fluorescence at the shorter wavelength of 226 nm. With proper optical filtering, these photons provide a highly sensitive explosives signature that is not susceptible to interference from traditional optical clutter sources (e.g., red-shifted fluorescence). Quantitative measurements of trace residues of TNT have been performed demonstrating this technique using a breadboard system, which relies upon a pulsed optical parametric oscillator (OPO) based laser. Based on these results, performance projections for a fieldable system are made.
READ LESS

Summary

MIT Lincoln Laboratory has developed a concept that could enable remote (10s of meters) detection of trace explosives' residues via a field-portable laser system. The technique relies upon laser-induced photodissociation of nitro-bearing explosives into vibrationally excited nitric oxide (NO) fragments. Subsequent optical probing of the first vibrationally excited state at...

READ MORE

Photoresist outgassing: a potential Achilles heel for short wavelength optical lithography?

Published in:
SPIE Vol. 5376, Advances in Resist Technology and Processing XXI, 22-27 February 2004, pp. 1-15.

Summary

The outgassing of volatile organic compounds during photoresist exposure at short wavelengths (
READ LESS

Summary

The outgassing of volatile organic compounds during photoresist exposure at short wavelengths (

READ MORE