Publications
Tagged As
A hybrid algorithm for parameter estimation (HAPE) for dynamic constant power loads
Summary
Summary
Low-inertia microgrids may easily have a single load which can make up most of the total load, thereby greatly affecting stability and power quality. Instead of a static load model, a dynamic constant power load (DCPL) model is considered here. Next, a hybrid algorithm for parameter estimation (HAPE) is introduced...
Modeling and distributed control of microgrids: a negative feedback approach
Summary
Summary
In this paper, we first show how general microgrid can be modeled as a negative feedback configuration comprising two subsystems. The first subsystem is the interconnected microgrid grid which is affected through negative feedback by the second subsystem consisting of all single-port components. This is modeled by transforming physical state...
An Eye on the Storm: Tracking Power Outages via the Internet of Things
Summary
Summary
Assessing the extent of power outages in the wake of disasters is a crucial but daunting challenge. We developed a prototype to estimate and map the severity and location of power outages throughout an event by taking advantage of IoT as a non-traditional power-sensing network. We present results used by...
Banshee distribution network benchmark and prototyping platform for hardware-in-the-loop integration of microgrid and device controllers
Summary
Summary
This article provides a unique benchmark to integrate and systematically evaluate advanced functionalities of microgrid and downstream device controllers. The article describes Banshee, a real-life power distribution network. It also details a real-time controller hardware-in-the-loop (HIL) prototyping platform to test the responses of the controllers and verify decision-making algorithms. The...