Summary
The Federal Aviation Administration may acquire a new Airport Surveillance Radar-ASR-11-to replace aging ASR-7s and ASR-8s with a digital terminal radar consistent with Advanced Automation System requirements. A survey of the radar manufacturing industry suggests that a solid-state transmitter will likely be a component of this radar. The ASR-11 will feature a digital weather processing channel to measure and display six calibrated levels of precipitation reflectivity. An additional weather surveillance goal is the capability to support detection of low altitude wind shear phenomena. Use of a low peak power, solid-state transmitter and associated pulse compression technology raises several issues with respect to the capability of ASR-11 to meet these weather measurement objectives: 1. ASR-11 sensitivity will be degraded by approximately 16 to 20 dB relative to the Klystron-based ASR-9 at short range. This results because it is not feasible to use pulse compression waveforms to compensate for low peak transmitter power at short range; 2. Stability of a solid state ASR-11 transmitter may significantly exceed that of previous vacuum tube ASR transmitters. Increased clutter suppression capability associated with this enhanced stability could partially offset the reduced sensitivity of ASR-11 in meeting weather detection goals; 3. Pulse compression range sidelobes may resilt in "ghost" images of actual weather features, displaced in range by as much as 10 km. In some circumstances, these could result in false indications of operationally significant weather features such as thunderstorm-induced gust fronts. We examine these issues through straightforward analyses and simulation. Our assessment depends heavily on Doppler weather radar measurements of thunderstorms and associated wind shear phenomena obtained with Lincoln Laboratory's Terminal Doppler Weather Radar and ASR-9 testbeds. Overall, our assessment indicates that a solid-state transmitter ASR-11 can provide six-level weather reflectivity data with accuracy comparable to that of the ASR-9. Detection of low altitude wind shear phenomena using a solid-state transmitter ASR is more problematic. Reduced sensitivity at short range--the range interval of primary operational concern for an on-airport ASR--results in significant degradation of its capability to measure the reflectivity and Doppler velocity signatures associated with gust fronts and "dry" microbursts. This degradation is not offset by the enhanced clutter suppression capability provided by a solid-state transmitter. Although pulse compression range sidelobes do not appear to be a major issue if they are held to the -55 dB level, simulations are presented where range sidelobes result in a false gust front wind shear signature.