A comparison of anemometer and Doppler radar winds during wind shear events
Summary
The Federal Aviation Administration (FAA) currently uses the anemometer-based Low Level Wind Shear Alert System (LLWAS) as the primary method of wind shear detection at major U.S. airports. With the upcoming deployment of the Terminal Doppler Weather Radar (TDWR) system, potential methods for integrating the two systems are being investigated. By integrating, advantages of both sensor systems can be utilized. Advantages of the LLWAS ground sensor network include true wind direction measurements, a high measurement frequency, a lack of sensitivity to clear air reflectivity, and few false alarms from radar point targets such as planes, birds, etc. Advantages of the radar include complete scan coverage of the region of concern, the ability to predict events, fewer terrain problems such as sheltering which can reduce the wind speed readings, and almost no false alarms due to non-hazardous wind shear such as thermals. The objectives of this study are to gain a clearer understanding of the basic relationship between the wind information provided by these two very different sensing systems, and to determine the impact this relationship may have on integration of the two operational systems. A proposed mathematical technique for "correcting" LLWAS winds where needed to better match radar winds is evaluated for cases of microburst (divergent) and gust front (convergent) wind shear.