Publications
Tactical 0-2 hour convective weather forecasts for FAA
Summary
Summary
Major airlines and FAA Traffic Flow Managers alike would prefer to plan their flight routes around convective weather and thereby avoid the tactical maneuvering that results when unforecasted thunderstorms occur. Strategic planning takes place daily and 2-6 hr forecasts are utilized, but these early plans remain unaltered in only the...
An automated, operational two hour convective weather forecast for the Corridor Integrated Weather
Summary
Summary
The FAA Aviation Weather Research Program (AWRP) is an initiative of the Weather and Flight Service Systems Integrated Product Team, AUA400. One of the goals of the AWRP is to create accurate and accessible forecasts of hazardous weather tailored to the needs of the aviation community. Pursuant to this goal...
Forecasting convective weather using multi-scale detectors and weather Classification - enhancements to the MIT Lincoln Laboratory Terminal Weather Forecast
Summary
Summary
Over the past decade the United States has seen drastic increases in air traffic delays resulting in enormous economic loses. Analysis shows that more then 50% of air traffic delays are due to convective weather. In response the FAA has assembled scientific and engineering teams from MIT Lincoln Laboratory, NCAR...
TCWF algorithm assessment - Memphis 2000
Summary
Summary
This report describes a formal Assessment of the Terminal Convective Weather Forecast (TCWF) algorithm, developed under the FAA Aviation Weather Research Program by MIT Lincoln Laboratory as part of the Convective Weather Product Development Team (PDT). TCWF is proposed as a Pre-Planned Product Improvement (P3I) enhancement to the operational ITWS...
The FAA Terminal Convective Weather Forecast product: scale separation filter optimization
Summary
Summary
A large percentage of serious air traffic delay at major airports in the warm season is caused by convective weather. The FAA Convective Weather Product Development team (PDT) has developed a Terminal Convective Weather Forecast product (TCWF) that can account for short-term (out to 60 min) systematic growth and decay...
Aviation user needs for convective weather forecasts
Summary
Summary
The prediction of convective weather is very important to aviation, since almost half of the serious delay at major airports in the warm season is caused by thunderstorms. The need for accurate 0-6 hr forecasts for NAS users has been the subject of extensive publications, forums, and advisory committees in...
The growth and decay storm tracker
Summary
Summary
An elliptical filter/tracker capable of accounting for systematic growth and delay, designated the Growth and Decay Storm Tracker, has been developed and tested. Its performance depends on the size and shape of the filter, the performance of the cross-correlation tracker, the time interval between successive scans, the forecast lead time...
The Terminal Convective Weather Forecast demonstration at the DFW International Airport
Summary
Summary
The FAA Convective Weather Product Development Team (PDT) is tasked with developing products for convective weather forecasts for aviation users. The overall product development is a collaborative effort between scientists from MIT Lincoln Laboratory (MIT/LL), the National Center for Atmospheric Research (NCAR), and the National Severe Storms Laboratory (NSSL). As...
The Memphis ITWS convective forecasting collaborative demonstration
Summary
Summary
Accurate, short-term forecasts of where thunderstorms will develop, move and decay allow for strategic traffic management in and around the aviation terminal and enroute airspace. Pre-planning to avoid adverse weather conditions provides safe, smooth and continuous air traffic flow and savings in both fuel cost and time. Wolfson, et. al...
ITWS microburst prediction algorithm performance, capabilities, and limitations
Summary
Summary
Lincoln Laboratory, under funding from the Federal Aviation Administration (FAA) Terminal Doppler Weather Radar program, has developed algorithms for automatically detecting microbursts. While microburst detection algorithms provide highly reliable warnings of microbursts. there still remains a period of time between microburst onset and pilot reaction during which aircraft are at...