The Next Generation Weather Radar (NEXRAD) dual polarization upgrade has begun adding a functional enhancement to classify hydrometeors. MIT Lincoln Laboratory (LL) develops NEXRAD-based weather radar products for Federal Aviation Administration (FAA) weather systems such as Corridor Integrated Weather System (CIWS), Integrated Terminal Weather System (ITWS), and Weather and Radar Processor (WARP). Without dual polarization, those products are limited to providing information on precipitation location and intensity. With dual polarization, LL is now developing new aviation weather products to determine locations of hydrometeor-based hazards. A product for Icing Hazards Level (IHL) is expected to benefit the FAA. LL has partnered with Valparaiso University (VU) in northern Indiana near Chicago since 2008 to study the evolution of winter storms prior to the NEXRAD dual polarization upgrade. VU contributes to the study a C-band dual polarization weather radar, an on-demand local sounding capability, and a surface winter weather verification team. Additionally, the Wolcott, IN wind profiler is about 70 km south within viewing range of the VU radar, and provides information on the fall speeds of the hydrometeors of interest. This resource-rich location has allowed for substantive study of many winter storm types: synoptic, lake effect, and frontal passages. A key to development of the IHL product is the ability to interpret dual polarization radar signatures from the winter microphysical states and precipitation structures. Evolution of the structures is a response to the microphysical water and ice saturation (sub or super) states. The magnitude of the vertical lift may affect the saturation states. Methods to segregate the radar signatures will be important regarding the inferred presence of a supercooled water icing hazard. The blizzard of Feb. 1 and 2, 2011 produced four distinct precipitation periods (snow, sleet, freezing drizzle, and lake effect snow), all of which will be discussed. The paper and presentation will also detail findings from the study of multiple winter storms and how they inform the development of the IHL product.