Summary
Airspace capacity constraints caused by adverse weather are a major driver for enhanced Traffic Flow Management (TFM) capabilities. One of the most prominent TFM initiatives introduced in recent years is the Airspace Flow Program (AFP). AFPs are used to plan and manage flights through airspace constrained by severe weather. An AFP is deployed using "strategic" (i.e., 4-6 hour) weather forecasts to determine AFP traffic throughput rates. These rates are set for hourly periods. However, as convective weather continuously evolves, the achievable en route airspace throughput can fluctuate significantly over periods as short as 15-30 minutes. Thus, without tactical AFP adjustments, inefficiencies in available airspace usage can arise, often resulting in increased air traffic delay. An analysis of AFP usage in 2007 was conducted in order to (1) better understand the relationship between AFP parameters and convective weather characteristics, and (2) assess the potential use of an objective model for forecasting tactical AFP throughput. An en route airway blockage-based algorithm, using tactical forecast information from the Corridor Integrated Weather System (CIWS), has been developed in order to objectively forecast achievable flow rates through AFP boundaries during convective weather. A description of the model and preliminary model results are presented.