Publications

Refine Results

(Filters Applied) Clear All

A study of dry microburst detection with airport surveillance radars

Author:
Published in:
MIT Lincoln Laboratory Report ATC-176

Summary

This report evaluates the capability of Airport Surveillance Radars (ASRs) for the detection of low altitude wind shear associated with the outflows of dry microbursts. It describes results of simulations of dry microburst observations by an ASR. These simulations incorporated weather and clutter data collected by the FL-2 pencil-beam Doppler weather radar at Denver Stapleton Airport in 1988 and 1989 and clutter data collected by the FL-3 ASR-9 emulation radar at Hunstville, Alabama. The impact of signal strength, overhanging precipitation, and ground clutter on both observability and algorithmic performance are assessed. Principal results of study are the following: 1. Overhanging precipitation and weak signal strength do not, by themselves, prohibit detection of dry outflows; however, occurence of false alarms and biases in velocity estimates indicate that improvements in the dual beam estimator that was evaluated would be required for reliable detection of these events. 2. Ground clutter tends to obscure dry outflow in regions where the difference between median effective clutter reflectivity and weather reflectivity exceeds 17-20 dB. A method for predicting the percentage of missed microburst detections due to ground clutter is used to estimate overall microburst detection probabilities for a "dry" environment such as Denver. Using measured clutter from an experimental ASR in Hunstville, AL, overall microburst detection probability is 83 percent. Using simulated Denver clutter, overall detection probability is 91 percent.
READ LESS

Summary

This report evaluates the capability of Airport Surveillance Radars (ASRs) for the detection of low altitude wind shear associated with the outflows of dry microbursts. It describes results of simulations of dry microburst observations by an ASR. These simulations incorporated weather and clutter data collected by the FL-2 pencil-beam Doppler...

READ MORE

ASR-9 weather channel test report

Published in:
MIT Lincoln Laboratory Report ATC-165

Summary

The ASR-9, the next generation airport surveillance radar, will be deployed by the FAA at over 100 locations throughout the United States. The system includes a weather channel designed to provide ATC personnel with timely and accurate weather reflectivity information as a supplement to normal aircraft information. This report presents results of an assessment of the ASR-9 weather channel performance. Two issues addressed are: (1) whether the ASR-9 weather channel performs according to FAA specifications, and (2) whether the ASR-9 weather channel adequately represents weather reflectivity for ATC purposes. These measurement results are intended to support the FAA in developing the operational use of ASR-9 weather information. Comparisons between data from an ASR-9 in Huntsville, Alabama, recorded during design qualification and testing, and data from two other "reference" radars were used as the basis for the assessment. Several storm cases were analyzed, comprised of stratiform rain, isolated convective storms, squall lines, and cold fronts containing multiple simultaneous convective storms. Results suggest that, with the exception of an apparent 3 dB discrepancy between the weather products of the ASR-9 and the "reference" radars, the ASR-9 weather channel seems to perform according to FAA specifications. Although the ASR-9 products give a reasonable representation of the extent and severity of potentially hazardous weather in Huntsville, the results suggest that the static storm model used to determine beamfill corrections for the ASR-9 should be optimized for the particular climatic region in which an ASR-9 will be operated.
READ LESS

Summary

The ASR-9, the next generation airport surveillance radar, will be deployed by the FAA at over 100 locations throughout the United States. The system includes a weather channel designed to provide ATC personnel with timely and accurate weather reflectivity information as a supplement to normal aircraft information. This report presents...

READ MORE

Showing Results

1-2 of 2