Publications

Refine Results

(Filters Applied) Clear All

Multi-lithic phased array architecture for airborne sense and avoid radar

Summary

Transmit and receive Ku-band phased array designs are described for testing an airborne sense and avoid radar. The arrays are small with a size of 24 cm x 9 cm and operate from 13 to 17 GHz with electronic scanning from plus of minus 45 degrees in azimuth and plus of minus 30 degrees in elevation. A novel design architecture allows the use of multiple multilayered printed circuit boards and simple air cooling.
READ LESS

Summary

Transmit and receive Ku-band phased array designs are described for testing an airborne sense and avoid radar. The arrays are small with a size of 24 cm x 9 cm and operate from 13 to 17 GHz with electronic scanning from plus of minus 45 degrees in azimuth and plus...

READ MORE

Stepped notch antenna array used as a low thermal resistance heat sink

Summary

A stepped notch antenna at Ku-band is developed to provide a thermal heat sink for active arrays. The antenna with forced air cooling provides up to 0.4 degrees C/W of thermal resistance. The antenna integration with a printed circuit board allows for high volume surface mount assembly of active devices.
READ LESS

Summary

A stepped notch antenna at Ku-band is developed to provide a thermal heat sink for active arrays. The antenna with forced air cooling provides up to 0.4 degrees C/W of thermal resistance. The antenna integration with a printed circuit board allows for high volume surface mount assembly of active devices.

READ MORE

Low cost multifunction phased array radar concept

Summary

MIT Lincoln Laboratory and M/A-COM are jointly conducting a technology demonstration of affordable Multifunction Phased Array Radar (MPAR) technology for Next Generation air traffic control and national weather surveillance services. Aggressive cost and performance goals have been established for the system. The array architecture and its realization using custom Transmit and Receive Integrated Circuits and a panel-based Line Replaceable Unit (LRU) will be presented. A program plan for risk reduction and system demonstration will be outlined.
READ LESS

Summary

MIT Lincoln Laboratory and M/A-COM are jointly conducting a technology demonstration of affordable Multifunction Phased Array Radar (MPAR) technology for Next Generation air traffic control and national weather surveillance services. Aggressive cost and performance goals have been established for the system. The array architecture and its realization using custom Transmit...

READ MORE

Advanced architecture for a low cost multifunction phased array radar

Summary

MIT Lincoln Laboratory and MIA-COM are jointly conducting a technology demonstration of affordable Multifunction Phased Array Radar (MPAR) technology for Next Generation air traffic control and national weather surveillance services. Aggressive cost and performance goals have been established for the system. The array architecture and its realization using custom Transmit and Receive Integrated Circuits and a panel-based Line Replaceable Unit (LRU) will be presented. A program plan for risk reduction and system demonstration will be outlined.
READ LESS

Summary

MIT Lincoln Laboratory and MIA-COM are jointly conducting a technology demonstration of affordable Multifunction Phased Array Radar (MPAR) technology for Next Generation air traffic control and national weather surveillance services. Aggressive cost and performance goals have been established for the system. The array architecture and its realization using custom Transmit...

READ MORE

Multifunction phased array radar (MPAR) for aircraft and weather surveillance

Summary

MIT Lincoln Laboratory and M/A-COM are jointly conducting a technology demonstration of affordable Multifunction Phased Array Radar (MPAR) technology for Next Generation air traffic control and national weather surveillance services. Aggressive cost and performance goals have been established for the system. The array architecture and its realization using custom Transmit and Receive Integrated Circuits and a panel-based Line Replaceable Unit (LRU) will be presented. A program plan for risk reduction and system demonstration will be outlined.
READ LESS

Summary

MIT Lincoln Laboratory and M/A-COM are jointly conducting a technology demonstration of affordable Multifunction Phased Array Radar (MPAR) technology for Next Generation air traffic control and national weather surveillance services. Aggressive cost and performance goals have been established for the system. The array architecture and its realization using custom Transmit...

READ MORE

Integrated compensation network for low mutual coupling of planar microstrip antenna arrays

Published in:
IEEE Antennas and Propagation Society Int. Symp., 2007 Digest, 9-15 June 2007, pp. 1273-6.

Summary

The unavoidable presence of mutual coupling of antenna elements in an array limits the ability to transmit and receive signals concurrently [1]. In the absence of mutual coupling, it is conceivable although still difficult to transmit and receive at the same frequency at the same time, i.e., FM-CW radars. The reflection from the antenna, leakage through the circulator, and any other possible deleterious paths from the high power amplifier to the low noise amplifier must be cancelled or compensated for in some manner to keep the receiver linear. With a single antenna the signal and noise paths are correlated and therefore cancellation of the signal inherently eliminates the noise. However, in an array environment the mutual coupling of antenna elements cause noise from neighboring high power amplifiers to couple into each channel's receiver. While the signal coupling is coherent, the noise is uncorrelated to a degree that depends on the amplifier gain and noise figure. The use of a low mutual coupling antenna array is a critical element in operating systems in this manner.
READ LESS

Summary

The unavoidable presence of mutual coupling of antenna elements in an array limits the ability to transmit and receive signals concurrently [1]. In the absence of mutual coupling, it is conceivable although still difficult to transmit and receive at the same frequency at the same time, i.e., FM-CW radars. The...

READ MORE

Ultra-wideband step notch array using stripline feed

Published in:
IEEE Antennas and Propagation Society Int. Symp., 2007 Digest, 9-15 June 2007, pp. 3361-4.

Summary

Electronically scanned array (ESA) antennas capable of efficiently radiating over an octave of bandwidth provide system designs with more flexibility in multiple mode operation. Communication and radar bands occupy different frequency allocations and the growing research in Ultra-Wideband (UWB) communications make the use of a single ESA to cover these frequencies an area of interest. Array antennas constructed of tapered-slot antennas and TEM horns have been investigated and shown to operate successfully over an octave bandwidth. These antennas use vertical feeds which make them optimal for brick architectures, but less than desirable for tile architectures. Conventional notch antennas require a feed extending vertically away from the notch antenna which makes a flat 2-D connection between antennas difficult. In this work an Ultra-Wideband Step Notch Array (UWSNA) was designed for ESA applications. The array operates over a 6-12 GHz range using a flat, tile-based 2-D feed network making this array optimal for conformal applications with a minimum of vertical distance. Simulation results and measurements on a small prototype demonstrate the concept.
READ LESS

Summary

Electronically scanned array (ESA) antennas capable of efficiently radiating over an octave of bandwidth provide system designs with more flexibility in multiple mode operation. Communication and radar bands occupy different frequency allocations and the growing research in Ultra-Wideband (UWB) communications make the use of a single ESA to cover these...

READ MORE

Showing Results

1-7 of 7