Publications
Photonic ADC: overcoming the bottleneck of electronic jitter
February 13, 2012
Journal Article
Published in:
Opt. Express, Vol. 20, No. 4, 13 February 2012, pp. 4454-4469.
Topic:
R&D area:
Summary
Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs - a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20- channel silicon filter bank has been demonstrated.
Summary
Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy...
READ MORE
Thermally tuned dual 20-channel ring resonator filter bank in SOI (silicon-on-insulator)
May 1, 2011
Conference Paper
Published in:
CLEO 2011, Conf. on Lasers and Electro-Optics, 1 May 2011.
Summary
Two 20-channel second-order optical filter banks have been fabricated. With tuning, the requirements for a wavelength multiplexed photonic AD-converter (insertion loss 1-3 dB, extinction >30 dB and optical bandwidth 22-27 GHz) are met.
Summary
Two 20-channel second-order optical filter banks have been fabricated. With tuning, the requirements for a wavelength multiplexed photonic AD-converter (insertion loss 1-3 dB, extinction >30 dB and optical bandwidth 22-27 GHz) are met.
READ MORE