Publications
Silicon photonics devices for integrated analog signal processing and sampling
Summary
Summary
Silicon photonics offers the possibility of a reduction in size weight and power for many optical systems, and could open up the ability to build optical systems with complexities that would otherwise be impossible to achieve. Silicon photonics is an emerging technology that has already been inserted into commercial communication...
Waveguide engineering for hybrid Si/III-V lasers and amplifiers
Summary
Summary
Using adiabatic tapers, hybrid silicon / III-V lasers and amplifiers are integrated with conventional thin (t = 0.25 um) silicon waveguides. Amplifiers have ~12 dB intrachip gain, and similar lasers have thresholds of 35 mA.
Driven dynamics and rotary echo of a qubit tunably coupled to a harmonic oscillator
Summary
Summary
We have investigated the driven dynamics of a superconducting flux qubit that is tunably coupled to a microwave resonator. We find that the qubit experiences an oscillating field mediated by off-resonant driving of the resonator, leading to strong modifications of the qubit Rabi frequency. This opens an additional noise channel...
Photonic ADC: overcoming the bottleneck of electronic jitter
Summary
Summary
Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy...
Thermally tuned dual 20-channel ring resonator filter bank in SOI (silicon-on-insulator)
Summary
Summary
Two 20-channel second-order optical filter banks have been fabricated. With tuning, the requirements for a wavelength multiplexed photonic AD-converter (insertion loss 1-3 dB, extinction >30 dB and optical bandwidth 22-27 GHz) are met.
Operation and optimization of silicon-diode-based optical modulators
Summary
Summary
An optical modulator in silicon based on a diode structure has been operated in both forward and reverse bias. This modulator achieves near state-of-the-art performance in both modes, thereby making this device idea for comparing the two modes of operation. In reverse bias, the device has a V[pi]L of 4.9...
CMOS-compatible dual-output silicon modulator for analog signal processing
Summary
Summary
A broadband, Mach-Zehnder-interferometer based silicon optical modulator is demonstrated, with an electrical bandwidth of 26 GHz and V[pi]L of 4 V·cm. The design of this modulator does not require epitaxial overgrowth and is therefore simpler to fabricate than previous devices with similar performance.
Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators
Summary
Summary
We present a systematic study of Mach-Zehnder silicon optical modulators based on carrier-injection. Detailed comparisons between modeling and measurement results are made with good agreement obtained for both DC and AC characteristics. A figure of merit, static VpiL, as low as 0.24Vmm is achieved. The effect of carrier lifetime variation...
All silicon infrared photodiodes: photo response and effects of processing temperature
Summary
Summary
CMOS compatible infrared waveguide Si photodiodes are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. This article compares diodes fabricated using two annealing temperatures, 300 and 475C. 0.25-mm-long diodes annealed to 300C have a response to 1539 nm radiation of 0.1 A W-1 at a reverse...
Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks
Summary
Summary
A frequency selective surface (FSS) structure has been fabricated for use in a thermophotovoltaic system. The FSS provides a means for reflecting the unusable light below the band gap of the thermophotovoltaic cell while transmitting the usable light above the band gap. This behavior is relatively independent of the light's...