Publications

Refine Results

(Filters Applied) Clear All

X-band receiver front-end chip in silicon germanium technology

Published in:
2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 23-25 January 2008.

Summary

This paper reports a demonstration of X-band receiver RF front-end components and the integrated chipset implemented in 0.18 mum silicon germanium (SiGe) technology. The system architecture consists of a single down conversion from X-band at the input to S-band at the intermediate frequency (IF) output. The microwave monolithic integrated circuit (MMIC) includes an X-band low noise amplifier, lead-lag splitter, balanced amplifiers, double balanced mixer, absorptive filter, and an IF amplifier. The integrated chip achieved greater than 30 dB of gain and less than 6 dB of noise figure.
READ LESS

Summary

This paper reports a demonstration of X-band receiver RF front-end components and the integrated chipset implemented in 0.18 mum silicon germanium (SiGe) technology. The system architecture consists of a single down conversion from X-band at the input to S-band at the intermediate frequency (IF) output. The microwave monolithic integrated circuit...

READ MORE

MEMs microswitch arrays for reconfigurable distributed microwave components

Summary

A revolutionary device technology and circuit concept is introduced for a new class of reconfigurable microwave circuits and antennas. The underlying mechanism is a compact MEMs cantilever microswitch that is arrayed in two-dimensions. The switches have the ability to be individually actuated. By constructing distributed circuit components from an array, the individual addressability of the microswitch provides the means to reconfigure the circuit trace and, thus, provides the ability to either fine-tune or completely reconfigure the circuit element's behavior. Device performance can be reconfigured over a decade in bandwidth in the nominal frequency range of 1 to 100 GHz. In addition, other circuit-element attributes can be reconfigured such as instantaneous bandwidth, impedance, and polarization (for antennas). This will enable the development of next-generation communication, radar and surveillance systems with agiIity to reconfigure operation for diverse operating bands, modes, power levels, and waveforms.
READ LESS

Summary

A revolutionary device technology and circuit concept is introduced for a new class of reconfigurable microwave circuits and antennas. The underlying mechanism is a compact MEMs cantilever microswitch that is arrayed in two-dimensions. The switches have the ability to be individually actuated. By constructing distributed circuit components from an array...

READ MORE

Showing Results

1-2 of 2