Publications

Refine Results

(Filters Applied) Clear All

Probabilistic coordination of heterogeneous teams from capability temporal logic specifications

Summary

This letter explores coordination of heterogeneous teams of agents from high-level specifications. We employ Capability Temporal Logic (CaTL) to express rich, temporal-spatial tasks that require cooperation between many agents with unique capabilities. CaTL specifies combinations of tasks, each with desired locations, duration, and set of capabilities, freeing the user from considering specific agent trajectories and their impact on multi-agent cooperation. CaTL also provides a quantitative robustness metric of satisfaction based on availability of required capabilities for each task. The novelty of this letter focuses on satisfaction of CaTL formulas under probabilistic conditions. Specifically, we consider uncertainties in robot motion (e.g., agents may fail to transition between regions with some probability) and local probabilistic workspace properties (e.g., if there are not enough agents of a required capability to complete a collaborative task). The proposed approach automatically formulates amixed-integer linear program given agents, their dynamics and capabilities, an abstraction of the workspace, and a CaTL formula. In addition to satisfying the given CaTL formula, the optimization considers the following secondary goals (in decreasing order of priority): 1) minimize the risk of transition failure due to uncertainties; 2) maximize probabilities of regional collaborative satisfaction (if there is an excess of agents); 3) maximize the availability robustness of CaTL for potential agent attrition; 4) minimize the total agent travel time. We evaluate the performance of the proposed framework and demonstrate its scalability via numerical simulations.
READ LESS

Summary

This letter explores coordination of heterogeneous teams of agents from high-level specifications. We employ Capability Temporal Logic (CaTL) to express rich, temporal-spatial tasks that require cooperation between many agents with unique capabilities. CaTL specifies combinations of tasks, each with desired locations, duration, and set of capabilities, freeing the user from...

READ MORE

AI-enabled, ultrasound-guided handheld robotic device for femoral vascular access

Summary

Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions. However, central access is normally performed by highly experienced critical care physicians in a hospital setting. We developed a handheld AI-enabled interventional device, AI-GUIDE (Artificial Intelligence Guided Ultrasound Interventional Device), capable of directing users with no ultrasound or interventional expertise to catheterize a deep blood vessel, with an initial focus on the femoral vein. AI-GUIDE integrates with widely available commercial portable ultrasound systems and guides a user in ultrasound probe localization, venous puncture-point localization, and needle insertion. The system performs vascular puncture robotically and incorporates a preloaded guidewire to facilitate the Seldinger technique of catheter insertion. Results from tissue-mimicking phantom and porcine studies under normotensive and hypotensive conditions provide evidence of the technique's robustness, with key performance metrics in a live porcine model including: a mean time to acquire femoral vein insertion point of 53 plus or minus 36 s (5 users with varying experience, in 20 trials), a total time to insert catheter of 80 plus or minus 30 s (1 user, in 6 trials), and a mean number of 1.1 (normotensive, 39 trials) and 1.3 (hypotensive, 55 trials) needle insertion attempts (1 user). These performance metrics in a porcine model are consistent with those for experienced medical providers performing central vascular access on humans in a hospital.
READ LESS

Summary

Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions...

READ MORE

Scalable and Robust Algorithms for Task-Based Coordination From High-Level Specifications (ScRATCHeS)

Summary

Many existing approaches for coordinating heterogeneous teams of robots either consider small numbers of agents, are application-specific, or do not adequately address common real world requirements, e.g., strict deadlines or intertask dependencies. We introduce scalable and robust algorithms for task-based coordination from high-level specifications (ScRATCHeS) to coordinate such teams. We define a specification language, capability temporal logic, to describe rich, temporal properties involving tasks requiring the participation of multiple agents with multiple capabilities, e.g., sensors or end effectors. Arbitrary missions and team dynamics are jointly encoded as constraints in a mixed integer linear program, and solved efficiently using commercial off-the-shelf solvers. ScRATCHeS optionally allows optimization for maximal robustness to agent attrition at the penalty of increased computation time.We include an online replanning algorithm that adjusts the plan after an agent has dropped out. The flexible specification language, fast solution time, and optional robustness of ScRATCHeS provide a first step toward a multipurpose on-the-fly planning tool for tasking large teams of agents with multiple capabilities enacting missions with multiple tasks. We present randomized computational experiments to characterize scalability and hardware demonstrations to illustrate the applicability of our methods.
READ LESS

Summary

Many existing approaches for coordinating heterogeneous teams of robots either consider small numbers of agents, are application-specific, or do not adequately address common real world requirements, e.g., strict deadlines or intertask dependencies. We introduce scalable and robust algorithms for task-based coordination from high-level specifications (ScRATCHeS) to coordinate such teams. We...

READ MORE

A neural network estimation of ankle torques from electromyography and accelerometry

Summary

Estimations of human joint torques can provide clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Predicting joint torques into the future can also be useful for anticipatory robot control design. In this work, we present a method of mapping joint torque estimates and sequences of torque predictions from motion capture and ground reaction forces to wearable sensor data using several modern types of neural networks. We use dense feedforward, convolutional, neural ordinary differential equation, and long short-term memory neural networks to learn the mapping for ankle plantarflexion and dorsiflexion torque during standing,walking, running, and sprinting, and consider both single-point torque estimation, as well as the prediction of a sequence of future torques. Our results show that long short-term memory neural networks, which consider incoming data sequentially, outperform dense feedforward, neural ordinary differential equation networks, and convolutional neural networks. Predictions of future ankle torques up to 0.4 s ahead also showed strong positive correlations with the actual torques. The proposed method relies on learning from a motion capture dataset, but once the model is built, the method uses wearable sensors that enable torque estimation without the motion capture data.
READ LESS

Summary

Estimations of human joint torques can provide clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Predicting joint torques into the future can also be useful for anticipatory robot control design. In this work, we present a method of mapping joint torque...

READ MORE

Ankle torque estimation during locomotion from surface electromyography and accelerometry

Published in:
2020 8th IEEE Intl. Conf. on Biomedical Robotics and Biomechatronics, BioRob, 29 November - 1 December 2020.

Summary

Estimations of human joint torques can provide quantitative, clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Standard methods for estimating joint torques are limited to laboratory or clinical settings since they require expensive equipment to measure joint kinematics and ground reaction forces. Wearable sensor data combined with neural networks may offer a less expensive and obtrusive estimation method.We present a method of mapping joint torque estimates obtained from motion capture and ground reaction forces to wearable sensor data. We use several different neural networks to learn the torque mapping for the ankle joints during standing, walking, running, and sprinting. Our results show that neural networks that consider time (recurrent and long short-term memory networks) outperform feedforward network architectures, producing results in the range of 0.005-0.008 N m/kg mean squared error (MSE) when compared to the inverse dynamics model on which it was trained. As a point of reference, the typical measurement errors from inverse dynamics models are in the range of 0.0004-0.0064 N m/kg MSE. Errors tended to increase with locomotion speed, with the highest errors during sprinting and the lowest during standing or walking. Future work may investigate model generalizability across sensor placements, subjects, locomotion variants, and usage duration. The proposed method relies on learning from a motion capture dataset, but once the model is built, the method uses wearable sensors that enable torque estimation without the motion capture data. These methods also have potential uses for the design and testing of wearable robotic systems outside of a laboratory environment.
READ LESS

Summary

Estimations of human joint torques can provide quantitative, clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Standard methods for estimating joint torques are limited to laboratory or clinical settings since they require expensive equipment to measure joint kinematics and ground reaction...

READ MORE

A hands-on middle-school robotics software program at MIT

Summary

Robotics competitions at the high school level attract a large number of students across the world. However, there is little emphasis on leveraging robotics to get middle school students excited about pursuing STEM education. In this paper, we describe a new program that targets middle school students in a local, four-week setting at the Massachusetts Institute of Technology (MIT). It aims to excite students by teaching the very basics of computer vision and robotics. The students program mini car-like robots, equipped with state-of-the-art computers, to navigate autonomously in a mock race track. We describe the hardware and software infrastructure that enables the program, the details of our curriculum, and the results of a short assessment. In addition, we describe four short programs, as well as a session where we teach high school teachers how to teach similar courses at their schools to their own students. The self-assessment indicates that the students feel more confident in programming and robotics after leaving the program, which we hope will enable them to pursue STEM education and robotics initiatives at school.
READ LESS

Summary

Robotics competitions at the high school level attract a large number of students across the world. However, there is little emphasis on leveraging robotics to get middle school students excited about pursuing STEM education. In this paper, we describe a new program that targets middle school students in a local...

READ MORE

Showing Results

1-6 of 6