3D game simulation engines have demonstrated utility in the areas of training, scientific analysis, and knowledge solicitation. This paper will make the case for the use of 3D game simulation engines in the field of sensor placement optimization. Our study used a series of parallel simulations in the Unity3D simulation framework to answer the questions: how many sensors of various modalities are required and where they should be placed to meet a desired threat detection threshold? The result is a framework that not only answers this sensor placement question, but can be easily expanded to differing optimization criteria as well as answer how a particular configuration responds to differing crowd flows or informed/non-informed adversaries. Additionally, we demonstrate the scalability of this framework by running parallel instances on a supercomputing grid and illustrate the processing speed gained.