Summary
The rise of graph analytic systems has created a need for ways to measure and compare the capabilities of these systems. Graph analytics present unique scalability difficulties. The machine learning, high performance computing, and visual analytics communities have wrestled with these difficulties for decades and developed methodologies for creating challenges to move these communities forward. The proposed Subgraph Isomorphism Graph Challenge draws upon prior challenges from machine learning, high performance computing, and visual analytics to create a graph challenge that is reflective of many real-world graph analytics processing systems. The Subgraph Isomorphism Graph Challenge is a holistic specification with multiple integrated kernels that can be run together or independently. Each kernel is well defined mathematically and can be implemented in any programming environment. Subgraph isomorphism is amenable to both vertex-centric implementations and array-based implementations (e.g., using the Graph-BLAS.org standard). The computations are simple enough that performance predictions can be made based on simple computing hardware models. The surrounding kernels provide the context for each kernel that allows rigorous definition of both the input and the output for each kernel. Furthermore, since the proposed graph challenge is scalable in both problem size and hardware, it can be used to measure and quantitatively compare a wide range of present day and future systems. Serial implementations in C++, Python, Python with Pandas, Matlab, Octave, and Julia have been implemented and their single threaded performance have been measured. Specifications, data, and software are publicly available at GraphChallenge.org.