Publications
Automatic detection of influential actors in disinformation networks
Summary
Summary
The weaponization of digital communications and social media to conduct disinformation campaigns at immense scale, speed, and reach presents new challenges to identify and counter hostile influence operations (IO). This paper presents an end-to-end framework to automate detection of disinformation narratives, networks, and influential actors. The framework integrates natural language...
Automated posterior interval evaluation for inference in probabilistic programming
Summary
Summary
In probabilistic inference, credible intervals constructed from posterior samples provide ranges of likely values for continuous parameters of interest. Intuitively, an inference procedure is optimal if it produces the most precise posterior intervals that cover the true parameter value with the expected frequency in repeated experiments. We present theories and...
GraphChallenge.org triangle counting performance [e-print]
Summary
Summary
The rise of graph analytic systems has created a need for new ways to measure and compare the capabilities of graph processing systems. The MIT/Amazon/IEEE Graph Challenge has been developed to provide a well-defined community venue for stimulating research and highlighting innovations in graph analysis software, hardware, algorithms, and systems...
Leveraging linear algebra to count and enumerate simple subgraphs
Summary
Summary
Even though subgraph counting and subgraph matching are well-known NP-Hard problems, they are foundational building blocks for many scientific and commercial applications. In order to analyze graphs that contain millions to billions of edges, distributed systems can provide computational scalability through search parallelization. One recent approach for exposing graph algorithm...
GraphChallenge.org: raising the bar on graph analytic performance
Summary
Summary
The rise of graph analytic systems has created a need for new ways to measure and compare the capabilities of graph processing systems. The MIT/Amazon/IEEE Graph Challenge has been developed to provide a well-defined community venue for stimulating research and highlighting innovations in graph analysis software, hardware, algorithms, and systems...
Influence estimation on social media networks using causal inference
Summary
Summary
Estimating influence on social media networks is an important practical and theoretical problem, especially because this new medium is widely exploited as a platform for disinformation and propaganda. This paper introduces a novel approach to influence estimation on social media networks and applies it to the real-world problem of characterizing...
Hybrid mixed-membership blockmodel for inference on realistic network interactions
Summary
Summary
This work proposes novel hybrid mixed-membership blockmodels (HMMB) that integrate three canonical network models to capture the characteristics of real-world interactions: community structure with mixed-membership, power-law-distributed node degrees, and sparsity. This hybrid model provides the capacity needed for realism, enabling control and inference on individual attributes of interest such as...
Streaming graph challenge: stochastic block partition
Summary
Summary
An important objective for analyzing real-world graphs is to achieve scalable performance on large, streaming graphs. A challenging and relevant example is the graph partition problem. As a combinatorial problem, graph partition is NP-hard, but existing relaxation methods provide reasonable approximate solutions that can be scaled for large graphs. Competitive...
Static graph challenge: subgraph isomorphism
Summary
Summary
The rise of graph analytic systems has created a need for ways to measure and compare the capabilities of these systems. Graph analytics present unique scalability difficulties. The machine learning, high performance computing, and visual analytics communities have wrestled with these difficulties for decades and developed methodologies for creating challenges...
Causal inference under network interference: a framework for experiments on social networks
Summary
Summary
No man is an island, as individuals interact and influence one another daily in our society. When social influence takes place in experiments on a population of interconnected individuals, the treatment on a unit may affect the outcomes of other units, a phenomenon known as interference. This thesis develops a...