Publications

Refine Results

(Filters Applied) Clear All

Evaluation of Eta model forecasts as a backup weather source for CTAS

Published in:
AIAA Guidance, Navigation and Control Conf.: a collection of Technical Papers, Vol. 3, 6-9 August 2001, pp. 1837-1842.

Summary

Knowledge of present and future winds and temperature is important for air traffic operations in general, but is crucial for Decision Support Tools (DSTs) that rely heavily on accurately predicting trajectories of aircraft. One such tool is the Center-TRACON Automation System (CTAS) developed by NASA Ames Research Center. The Rapid Update Cycle (RUC) system is presently the principal source of weather information for CTAS. RUC provides weather updates on an hourly basis on a nationwide grid with horizontal resolution of 40 km and vertical resolution of 25 mb in pressure. However, a recent study of RUC data availability showed that the NWS and NOAA servers are subject to frequent service interruptions. Over a 210 day period (4/19/00-11/11/00), the availability of two NOAA and one NWS RUC server was monitored automatically. It was found that 60 days (29%) had periods of one hour or more where at least one server was out, with the longest outage lasting 13 hours on 9/21/00. In addition, there were 9 days (4%) for which all three servers were simultaneously unavailable, with the longest outage lasting 6 hours on 5/7/00. Moreover, even longer outages have been experienced with the RUC servers over the past several years. RUC forecasts are provided for up to 12 hours, but these are not currently used in CTAS as back up sources (except that the 1 or 2 hour forecasts are used for the current winds to compensate for transmission delays in obtaining the RUC data). Since RUC outages have been experienced for longer than 12 hours, it is therefore necessary to back RUC up with another weather source providing long-range forecasts. This paper examines the use of the Eta model forecasts as a back-up weather sources for CTAS. A specific output of the Eta km model, namely Grid 104, was selected for evaluation because its horizontal and vertical resolution, spatial extent and output parameters match most closely those of RUC. While RUC forecasts for a maximum of 12 hours into the future, Eta does so for up to 60 hours. In the event that a RUC outage would occur, Eta data could be substituted. If Eta data also became unavailable, the last issued forecasts could allow CTAS to continue to function properly for up to 60 hours. The approach used for evaluating the suitability of the Eta model and RUC forecasts was to compare them with the RUC analysis output or 0 hour forecast file, at the forecast time. Not surprisingly, it was found that the RUC model forecasts had lower wind magnitude errors out to 12 hours (the limit of the RUC forecasts) than the Eta model had. Hosever, the wind magnitude error for the Eta model grew only from 9 ft/s at 12 hours (comparable with RUC) to 11 ft/s at 48 hours. We therefore conclude that RUC forecasts should be used for outages up to 12 hours and Eta model forecasts should be used for outages up to 60 hours.
READ LESS

Summary

Knowledge of present and future winds and temperature is important for air traffic operations in general, but is crucial for Decision Support Tools (DSTs) that rely heavily on accurately predicting trajectories of aircraft. One such tool is the Center-TRACON Automation System (CTAS) developed by NASA Ames Research Center. The Rapid...

READ MORE

The design and implementation of the new center/TRACON automation system (CTAS) weather distribution system

Published in:
AIAA Guidance, Navigation and Control Conf.: a collection of Technical Papers, Vol. 3, 6-9 August 2001, pp. 1818-1836.

Summary

The National Aeronautics and Space Administration (NASA), working with the Federal Aviation Administration (FAA), is developing a suite of decision support tools, called the Center/TRACON Automation System (CTAS). CTAS tools such as the Traffic Management Advisor (TMA) and Final Approach Spacing Tool (FAST) are designed to increase the efficiency of the air traffic flow into and through Terminal airspace. A core capability of CTAS is the Trajectory Synthesis (TS) software for accurately predicting an aircraft's trajectory. In order to compute these trajectories, TS needs an efficient access mechanism for obtaining the most up-to-date and accurate winds. The current CTAS weather access mechanism suffers from several major drawbacks. First, the mechanism can only handle a winds at a single resolution (presently 40-80 km). This prevents CTAS from taking advantage of high resolution wind from sources such as the Integrated Terminal Weather System (ITWS). Second, the present weather access mechanism is memory intensive and does not extend well to higher grid resolutions. This potentially limits CTAS in taking advantage of improvements in wind resolution from sources such as the Rapid Update Cycle (RUC). Third, the present method is processing intensive and limits the ability of CTAS to handle higher traffic loads. This potentially could impact the ability of new tools such as Direct-To and Multi-Center TMA (McTMA) to deal with increased traffic loads associated with adjacent Centers. In response to these challenges, M.I.T. Lincoln Laboratory has developed a new CTAS weather distribution (WxDist) system. There are two key elements to the new approach. First, the single wind grid is replaced with a set of nested grids for the TRACON, Center and Adjacent Center airspaces. Each and the grids are updated independently of each other. The second key element is replacement of the present interpolation scheme with a nearest-neighbor value approach. Previous studies have shown that this nearest-neighbor method does not degrade trajectory accuracy for the grid sizes under consideration. The new software design replaces the current implementation, known as the Weather Data Processing Daemon (WDPD), with a new approach. The Weather Server (WxServer) sends the weather grids to a Weather Client (WxClient) residing on each CTAS workstation running TS or PGUI (Planview Graphical User Interface) processes. The present point-to-point weather file distribution is replaced in the new scheme with a reliable multi-cast mechanism. This new distribution mechanism combined with data compression techniques greatly reduces network traffic compared to the present method. Other new processes combine RUC and ITWS data in a fail-soft manner to generate the multiple grids. The nearest-neighbor access method also substantially speeds up weather access. In combination with other improvements, the winds access speed is more than doubled over the original implementation.
READ LESS

Summary

The National Aeronautics and Space Administration (NASA), working with the Federal Aviation Administration (FAA), is developing a suite of decision support tools, called the Center/TRACON Automation System (CTAS). CTAS tools such as the Traffic Management Advisor (TMA) and Final Approach Spacing Tool (FAST) are designed to increase the efficiency of...

READ MORE

GLONASS performance in 1992: a review

Published in:
GPS World, Vol. 4, No. 5, May 1993, pp. 28-39.

Summary

Researchers at MIT's Lincoln Laboratory reviewed GLONASS developments during 1992, focusing on the requirements of civil aviation and the issues related to position estimation. The results show that the overall performance remains substantially the same as observed in 1991.
READ LESS

Summary

Researchers at MIT's Lincoln Laboratory reviewed GLONASS developments during 1992, focusing on the requirements of civil aviation and the issues related to position estimation. The results show that the overall performance remains substantially the same as observed in 1991.

READ MORE

Showing Results

1-3 of 3