Publications

Refine Results

(Filters Applied) Clear All

Quantifying bias in face verification system

Summary

Machine learning models perform face verification (FV) for a variety of highly consequential applications, such as biometric authentication, face identification, and surveillance. Many state-of-the-art FV systems suffer from unequal performance across demographic groups, which is commonly overlooked by evaluation measures that do not assess population-specific performance. Deployed systems with bias may result in serious harm against individuals or groups who experience underperformance. We explore several fairness definitions and metrics, attempting to quantify bias in Google’s FaceNet model. In addition to statistical fairness metrics, we analyze clustered face embeddings produced by the FV model. We link well-clustered embeddings (well-defined, dense clusters) for a demographic group to biased model performance against that group. We present the intuition that FV systems underperform on protected demographic groups because they are less sensitive to differences between features within those groups, as evidenced by clustered embeddings. We show how this performance discrepancy results from a combination of representation and aggregation bias.
READ LESS

Summary

Machine learning models perform face verification (FV) for a variety of highly consequential applications, such as biometric authentication, face identification, and surveillance. Many state-of-the-art FV systems suffer from unequal performance across demographic groups, which is commonly overlooked by evaluation measures that do not assess population-specific performance. Deployed systems with bias...

READ MORE

Adapting deep learning models to new meteorological contexts using transfer learning

Published in:
2021 IEEE International Conference on Big Data (Big Data), 2021, pp. 4169-4177, doi: 10.1109/BigData52589.2021.9671451.

Summary

Meteorological applications such as precipitation nowcasting, synthetic radar generation, statistical downscaling and others have benefited from deep learning (DL) approaches, however several challenges remain for widespread adaptation of these complex models in operational systems. One of these challenges is adequate generalizability; deep learning models trained from datasets collected in specific contexts should not be expected to perform as well when applied to different contexts required by large operational systems. One obvious mitigation for this is to collect massive amounts of training data that cover all expected meteorological contexts, however this is not only costly and difficult to manage, but is also not possible in many parts of the globe where certain sensing platforms are sparse. In this paper, we describe an application of transfer learning to perform domain transfer for deep learning models. We demonstrate a transfer learning algorithm called weight superposition to adapt a Convolutional Neural Network trained in a source context to a new target context. Weight superposition is a method for storing multiple models within a single set of parameters thus greatly simplifying model maintenance and training. This approach also addresses the issue of catastrophic forgetting where a model, once adapted to a new context, performs poorly in the original context. We apply weight superposition to the problem of synthetic weather radar generation and show that in scenarios where the target context has less data, a model adapted with weight superposition is better at maintaining performance when compared to simpler methods. Conversely, the simple adapted model performs better on the source context when the source and target contexts have comparable amounts of data.
READ LESS

Summary

Meteorological applications such as precipitation nowcasting, synthetic radar generation, statistical downscaling and others have benefited from deep learning (DL) approaches, however several challenges remain for widespread adaptation of these complex models in operational systems. One of these challenges is adequate generalizability; deep learning models trained from datasets collected in specific...

READ MORE

Multi-modal audio, video and physiological sensor learning for continuous emotion prediction

Summary

The automatic determination of emotional state from multimedia content is an inherently challenging problem with a broad range of applications including biomedical diagnostics, multimedia retrieval, and human computer interfaces. The Audio Video Emotion Challenge (AVEC) 2016 provides a well-defined framework for developing and rigorously evaluating innovative approaches for estimating the arousal and valence states of emotion as a function of time. It presents the opportunity for investigating multimodal solutions that include audio, video, and physiological sensor signals. This paper provides an overview of our AVEC Emotion Challenge system, which uses multi-feature learning and fusion across all available modalities. It includes a number of technical contributions, including the development of novel high- and low-level features for modeling emotion in the audio, video, and physiological channels. Low-level features include modeling arousal in audio with minimal prosodic-based descriptors. High-level features are derived from supervised and unsupervised machine learning approaches based on sparse coding and deep learning. Finally, a state space estimation approach is applied for score fusion that demonstrates the importance of exploiting the time-series nature of the arousal and valence states. The resulting system outperforms the baseline systems [10] on the test evaluation set with an achieved Concordant Correlation Coefficient (CCC) for arousal of 0.770 vs 0.702 (baseline) and for valence of 0.687 vs 0.638. Future work will focus on exploiting the time-varying nature of individual channels in the multi-modal framework.
READ LESS

Summary

The automatic determination of emotional state from multimedia content is an inherently challenging problem with a broad range of applications including biomedical diagnostics, multimedia retrieval, and human computer interfaces. The Audio Video Emotion Challenge (AVEC) 2016 provides a well-defined framework for developing and rigorously evaluating innovative approaches for estimating the...

READ MORE

Detecting depression using vocal, facial and semantic communication cues

Summary

Major depressive disorder (MDD) is known to result in neurophysiological and neurocognitive changes that affect control of motor, linguistic, and cognitive functions. MDD's impact on these processes is reflected in an individual's communication via coupled mechanisms: vocal articulation, facial gesturing and choice of content to convey in a dialogue. In particular, MDD-induced neurophysiological changes are associated with a decline in dynamics and coordination of speech and facial motor control, while neurocognitive changes influence dialogue semantics. In this paper, biomarkers are derived from all of these modalities, drawing first from previously developed neurophysiologically motivated speech and facial coordination and timing features. In addition, a novel indicator of lower vocal tract constriction in articulation is incorporated that relates to vocal projection. Semantic features are analyzed for subject/avatar dialogue content using a sparse coded lexical embedding space, and for contextual clues related to the subject's present or past depression status. The features and depression classification system were developed for the 6th International Audio/Video Emotion Challenge (AVEC), which provides data consisting of audio, video-based facial action units, and transcribed text of individuals communicating with the human-controlled avatar. A clinical Patient Health Questionnaire (PHQ) score and binary depression decision are provided for each participant. PHQ predictions were obtained by fusing outputs from a Gaussian staircase regressor for each feature set, with results on the development set of mean F1=0.81, RMSE=5.31, and MAE=3.34. These compare favorably to the challenge baseline development results of mean F1=0.73, RMSE=6.62, and MAE=5.52. On test set evaluation, our system obtained a mean F1=0.70, which is similar to the challenge baseline test result. Future work calls for consideration of joint feature analyses across modalities in an effort to detect neurological disorders based on the interplay of motor, linguistic, affective, and cognitive components of communication.
READ LESS

Summary

Major depressive disorder (MDD) is known to result in neurophysiological and neurocognitive changes that affect control of motor, linguistic, and cognitive functions. MDD's impact on these processes is reflected in an individual's communication via coupled mechanisms: vocal articulation, facial gesturing and choice of content to convey in a dialogue. In...

READ MORE

How deep neural networks can improve emotion recognition on video data

Published in:
ICIP: 2016 IEEE Int. Conf. on Image Processing, 25-28 September 2016.

Summary

We consider the task of dimensional emotion recognition on video data using deep learning. While several previous methods have shown the benefits of training temporal neural network models such as recurrent neural networks (RNNs) on hand-crafted features, few works have considered combining convolutional neural networks (CNNs) with RNNs. In this work, we present a system that performs emotion recognition on video data using both CNNs and RNNs, and we also analyze how much each neural network component contributes to the system's overall performance. We present our findings on videos from the Audio/Visual+Emotion Challenge (AV+EC2015). In our experiments, we analyze the effects of several hyperparameters on overall performance while also achieving superior performance to the baseline and other competing methods.
READ LESS

Summary

We consider the task of dimensional emotion recognition on video data using deep learning. While several previous methods have shown the benefits of training temporal neural network models such as recurrent neural networks (RNNs) on hand-crafted features, few works have considered combining convolutional neural networks (CNNs) with RNNs. In this...

READ MORE

Showing Results

1-5 of 5