Publications

Refine Results

(Filters Applied) Clear All

Secondary Surveillance Phased Array Radar (SSPAR): initial feasibility study

Summary

The U.S. Federal Aviation Administration is deploying Automatic Dependent Surveillance-Broadcast (ADS-B) to provide next-generation surveillance derived through down- and cross-link of global positioning satellite (GPS) navigation data. While ADS-B will be the primary future surveillance system, FAA recognizes that backup surveillance capabilities must be provided to assure that air traffic control (ATC) services can continue to be provided when individual aircraft transponders fail and during localized, short-duration GPS outages. This report describes a potential ADS-B backup capability, Secondary Surveillance Phased Array Radar or SSPAR. SSPAR will interrogate aircraft transponders and receive replies using a sparse, non-rotating array of approximately 17 omnidirectional (in azimuth) antennae. Each array element will transmit and receive independently so as to form directional transmit beams for transponder interrogation, and support high-resolution direction finding for received signals. Because each SSPAR element is independently digitized, transponder returns from all azimuths can be equipped with Traffic Alert and Collision Avoidance System (TCAS) and ADS-B avionics to reduce spectrum usage and maintain the high surveillance update rate (~1 per second) achieved by ADS-B. Recurring costs for SSPAR will be low since it involves no moving parts and the number of array channels is small. This report describes an SSPAR configuration supporting terminal operations. We consider interrogation and receive approaches, antenna array configuration, signal processing and preliminary performance analysis. An analysis of SSPAR's impact on spectrum congestion in the beacon radar band is presented, as are concepts for integrating SSPAR and next generation primary radar to improve the efficiency and accuracy of aircraft and weather surveillance.
READ LESS

Summary

The U.S. Federal Aviation Administration is deploying Automatic Dependent Surveillance-Broadcast (ADS-B) to provide next-generation surveillance derived through down- and cross-link of global positioning satellite (GPS) navigation data. While ADS-B will be the primary future surveillance system, FAA recognizes that backup surveillance capabilities must be provided to assure that air traffic...

READ MORE

Triangle TCAS antenna

Published in:
MIT Lincoln Laboratory Report ATC-380

Summary

The Traffic Alert and Collision Avoidance (TCAS) provides a pilot display showing the range and bearing of nearby aircraft. TCAS obtains the bearing information by using an angle-of-arrival antenna. In the development of TCAS at Lincoln Laboratory, the first airborne tests were conducted using an Adcock antenna, which is a small square array of four monopole elements. This report describes an alternative antenna for TCAS, using three elements in the shape of a triangle. It is shown that the triangle antenna is less sensitive to receiver noise, and that improvement factor is about 10 dB.
READ LESS

Summary

The Traffic Alert and Collision Avoidance (TCAS) provides a pilot display showing the range and bearing of nearby aircraft. TCAS obtains the bearing information by using an angle-of-arrival antenna. In the development of TCAS at Lincoln Laboratory, the first airborne tests were conducted using an Adcock antenna, which is a...

READ MORE

MIT Lincoln Laboratory TCAS surveillance performance

Published in:
MIT Lincoln Laboratory Report ATC-370

Summary

The Traffic Alert and Collision Avoidance System (TCAS) Version 7 surveillance requirements were developed in the mid-1990s with the use of limited radar data. Recently, a more comprehensive radar data source has become available, enabling a thorough analysis of TCAS surveillance performance throughouth the National Airspace System (NAS). This paper characterizes six high traffic terminal environments over three months. A busy one hour period was selected from each location for density and equipage measurements. This paper then describes the use of a high fidelity simulation to characterize TCAS surveillance performance in the isx locations. Transponder utilization due to TCAS and TCAS surveillance range are compared with the design requirements, including interference limiting specifications. The effect of TCAS surveillance activity on Air Traffic Control (ATC) ground radar performance is also investigated. Results indicate that the surveillance algorithms perform as intended and that TCAS has a minimal impact on ground radar. Areas of concern are noted for future investigation.
READ LESS

Summary

The Traffic Alert and Collision Avoidance System (TCAS) Version 7 surveillance requirements were developed in the mid-1990s with the use of limited radar data. Recently, a more comprehensive radar data source has become available, enabling a thorough analysis of TCAS surveillance performance throughouth the National Airspace System (NAS). This paper...

READ MORE

Multilateration system development history and performance at Dallas/Ft. Worth Airport

Published in:
19th AIAA/IEEE Digital Avionics Systems Conf., Vol. 1, 7-13 October 2000, pp. 2.E.1-1 - 2.E.1-8.

Summary

The long search for a method to provide accurate secondary radar beacon surveillance with aircraft ID over the whole airport surface has succeeded, using the Mode S squitter and whisper shout technologies to provide signal sources on which to make multilateration position measurements. The resulting multilateration system will greatly improve the situational awareness of the ground controllers, and provide inputs to automation functions, providing improvements in airport safety and capacity.
READ LESS

Summary

The long search for a method to provide accurate secondary radar beacon surveillance with aircraft ID over the whole airport surface has succeeded, using the Mode S squitter and whisper shout technologies to provide signal sources on which to make multilateration position measurements. The resulting multilateration system will greatly improve...

READ MORE

Operational and spectrum tests for ATIDS at Dallas/Fort Worth Airport

Published in:
MIT Lincoln Laboratory Report ATC-272

Summary

Runway Incursion (RI) prevention is on the National Transportation Safety Board's (NTSB) list of "10 Most Wanted" safety improvements. Improved surveillance on the airport surface is an important ingredient in that it improves situational awareness and improves the accuracy of tracks used by automation algorithms. Towards this goal, the Runway Incursion Reduction Program (RIRP) has been developing the Airport Target Identification System (ATIDS). ATIDS is a prototype multilateration and Automatic Dependent Surveillance - Broadcast (ADS-B) system. It requires the enabling of existing transponders on the airport surface....The RIRP team, which includes the FAA Volpe National Transportation Systems Center, Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL) and Trios Associates, Inc., has conducted interferences tests at Dallas/Fort Worth Airport (DFW) to quantify the impact that ATIDS would have on that high-use environment. The tests included environmental 1040/1090 MHz measurements, ATCRBS false target investigations, and Mode S interrogation tests. This document reports the results of these tests. [Not complete].
READ LESS

Summary

Runway Incursion (RI) prevention is on the National Transportation Safety Board's (NTSB) list of "10 Most Wanted" safety improvements. Improved surveillance on the airport surface is an important ingredient in that it improves situational awareness and improves the accuracy of tracks used by automation algorithms. Towards this goal, the Runway...

READ MORE

Multilateration on Mode S and ATCRBS signals at Atlanta's Hartsfield Airport

Published in:
MIT Lincoln Laboratory Report ATC-260

Summary

The ATC community is seeking a way to obtain aircraft ID and improved surveillance on the airport movement area. Surface radars provide good surveillance data, but do not provide ID, may not cover the whole movement area, and suffer from false reflection targets and performance degradations in rain. This report describes an evolutionary technique employing multilateration, TCAS technology, and existing ATCBI transponders to provide the desired surface surveillance information. Five multilateration receiver/transmitters (RTs) based on TCAS units, and a central multilateration computer processor were procured and installed on the highest available buildings on the perimeter of the north side of Atlanta's Hartsfield airport. The resulting coverage was such that there was a 93% probability that a multilateration position would be computed on a given Mode S short squitter emitted from a a target at a randomly selected position on the movement area. Multilateration was performed on ATCRBS targets using replies elicited by whisper shout methods originally developed for TCAS. Measurements showed that whisper shout was successful in degarbling targets that were in close proximity on the movement area. The probability of obtaining an ATCRBS multilateration position in a given one second interval depended on the number of whisper shout interrogations transmitted. The equipment required over 10 interrogations per target per second to obtain per second multilateration update rates on two typical targets of 58% and 83% respectively. This less than anticipated performance was primarily due to the inefficient whisper shout interrogation technique that was used in the test equipment. This can be corrected in next generation equipment. The multilateration accuracy was about 20 feet one sigma, as anticipated from theoretical considerations and previous experience with other equipment. By combining the multilateration data with ASDE data and tracking the results, it would be possible to obtain track reliabilities on the airport surface similar to that obtained elsewhere in the ATC system but update rates of 1Hz as required for surface surveillance and control purposes. The RTs were also capable of receiving Mode S long squitters containing GPS position information. The probability of at least one of the 5RTs receiving a given long squitter was essentially 100% on the movement area.
READ LESS

Summary

The ATC community is seeking a way to obtain aircraft ID and improved surveillance on the airport movement area. Surface radars provide good surveillance data, but do not provide ID, may not cover the whole movement area, and suffer from false reflection targets and performance degradations in rain. This report...

READ MORE

TCAS: maneuvering aircraft in the horizontal plane

Published in:
Lincoln Laboratory Journal, Vol. 7, No. 2, Fall 1994, pp. 295-312.

Summary

The Traffic Alert and Collision Avoidance System (TCAS II) is now operating in all commercial airline aircraft to reduce the risk of midair collisions. TCAS II determines the relative positions of nearby aircraft, called intruders, by interrogating their transponders and receiving their replies. An intruder deemed a potential threat will trigger a resolution advisory (RA) that consists of an audible alert and directive that instructs the pilot to execute a vertical avoidance maneuver. Lincoln Laboratory has investigated the possibility of increasing the capability of TCAS II by incorporating the horizontal maneuvering of aircraft. Horizontal RAs can be computed if the intruder horizontal miss distances at closest approach are known. Horizontal miss distances can be estimated with range and bearing measurements of intruders. With this method, however, large errors in estimating the bearing rates will result in large errors in calculating the horizontal miss distances. An improved method of determining the horizontal miss distances may be to use the Mode S data link to obtain state data (position, velocity, and acceleration) from intruder aircraft.
READ LESS

Summary

The Traffic Alert and Collision Avoidance System (TCAS II) is now operating in all commercial airline aircraft to reduce the risk of midair collisions. TCAS II determines the relative positions of nearby aircraft, called intruders, by interrogating their transponders and receiving their replies. An intruder deemed a potential threat will...

READ MORE

Safety analysis of the Traffic Information Service

Published in:
MIT Lincoln Laboratory Report ATC-226

Summary

Traffic Information Service (TIS) is a Mode S data link application being developed for use by general aviation (GA) pilots. Its purpose is to provide a low-cost means of assisting the pilot in visual acquisition of nearby aircraft. The service provides two functions: traffic alerting and threat assessment. These functions are also performed by the Traffic Alert and Collision Avoidance System (TCAS). The purpose of this report is to evaluate the effectiveness and safety of TIS in relation to that of TCAS I. The analysis begins with a conceptual review of Andrews' statistical model of visual acquisition. Next, the surveillance systems and threat-detection logic of TIS and TCAS I are reviewed. Results of a Monte Carlo simulation that modeled the threat-assessment performance of TCAS I and TIS are also presented. The analysis supports the conclusion that, because of the high degree of similarity between TIS and TCAS I, TIS is a safe and effective means of assisting the pilot in visual acquisition of air traffic.
READ LESS

Summary

Traffic Information Service (TIS) is a Mode S data link application being developed for use by general aviation (GA) pilots. Its purpose is to provide a low-cost means of assisting the pilot in visual acquisition of nearby aircraft. The service provides two functions: traffic alerting and threat assessment. These functions...

READ MORE

GPS-squitter experimental results

Published in:
13th AIAA/IEEE Digital Avionics Systems Conf., 30 October - 3 November 1994, pp. 521-527.

Summary

GPS-Squitter is a system concept that merges the capabilities of Automatic Dependent Surveillance (ADS) and the Mode S beacon radar. The result is an integrated concept for seamless surveillance and data link that permits equipped aircraft to participate in ADS or beacon ground environments. This offers many possibilities for transition from beacon to ADS-based surveillance. This paper briefly defines the GPS-Squitter concept and its principal applications. The thrust of the paper is the presentation of surface and airborne surveillance measurements made at Hanscom Field in Bedford, Massachusetts and at the Logan International Airport in Boston. In each case the measurements show the excellent surveillance performance provided by this concept.
READ LESS

Summary

GPS-Squitter is a system concept that merges the capabilities of Automatic Dependent Surveillance (ADS) and the Mode S beacon radar. The result is an integrated concept for seamless surveillance and data link that permits equipped aircraft to participate in ADS or beacon ground environments. This offers many possibilities for transition...

READ MORE

Analysis of surveillance performance at Chicago O'Hare Airport

Published in:
MIT Lincoln Laboratory Report ATC-193

Summary

This report describes the results of RF measurements of the 1030 and 1090 MHz environment in the Chicago terminal area conducted by Lincoln Laboratory in October 1991. The measurements were made at the request of the FAA in response to reports by controllers in Chicago that TCAS interrogations are affecting the surveillance performance of the Chicago Secondary Surveillance Radar (SSR). The Airborne Meauserements Facility (AMF), developed at Lincoln Laboratory, was used to gather TCAS and SSR interrogation and reply data in the vicinity of O'Hare Airport during periods of active TCAS operation. Simultaneously, local aircraft track data were collected using the Automated Radar Terminal System (ARTS) data recording facility. Analysis of both the AMF data and the ARTS data show that TCAS interrogations do not cause significant degradation in SSR surveillance performance and that the average Chicago ARTS track performance in the presence of TCAS-equipped aircraft is comparable to earlier measurements of track performance in Chicago as well as at a number of other high-density terminal areas. Specific regions within the CHicago surveillance area were observed to contain concentrations of poor ARTS track performance, and analysis of the data has shown the cause to be differential vertical lobing associated with the SSR antenna and faulty Mode S transponders on certain aircarrier aircraft. Both of these problems have subsequently been corrected.
READ LESS

Summary

This report describes the results of RF measurements of the 1030 and 1090 MHz environment in the Chicago terminal area conducted by Lincoln Laboratory in October 1991. The measurements were made at the request of the FAA in response to reports by controllers in Chicago that TCAS interrogations are affecting...

READ MORE

Showing Results

1-10 of 15