Publications

Refine Results

(Filters Applied) Clear All

Big data strategies for data center infrastructure management using a 3D gaming platform

Summary

High Performance Computing (HPC) is intrinsically linked to effective Data Center Infrastructure Management (DCIM). Cloud services and HPC have become key components in Department of Defense and corporate Information Technology competitive strategies in the global and commercial spaces. As a result, the reliance on consistent, reliable Data Center space is more critical than ever. The costs and complexity of providing quality DCIM are constantly being tested and evaluated by the United States Government and companies such as Google, Microsoft and Facebook. This paper will demonstrate a system where Big Data strategies and 3D gaming technology is leveraged to successfully monitor and analyze multiple HPC systems and a lights-out modular HP EcoPOD 240a Data Center on a singular platform. Big Data technology and a 3D gaming platform enables the relative real time monitoring of 5000 environmental sensors, more than 3500 IT data points and display visual analytics of the overall operating condition of the Data Center from a command center over 100 miles away. In addition, the Big Data model allows for in depth analysis of historical trends and conditions to optimize operations achieving even greater efficiencies and reliability.
READ LESS

Summary

High Performance Computing (HPC) is intrinsically linked to effective Data Center Infrastructure Management (DCIM). Cloud services and HPC have become key components in Department of Defense and corporate Information Technology competitive strategies in the global and commercial spaces. As a result, the reliance on consistent, reliable Data Center space is...

READ MORE

Improving big data visual analytics with interactive virtual reality

Published in:
HPEC 2015: IEEE Conf. on High Performance Extreme Computing, 15-17 September 2015.

Summary

For decades, the growth and volume of digital data collection has made it challenging to digest large volumes of information and extract underlying structure. Coined 'Big Data', massive amounts of information has quite often been gathered inconsistently (e.g from many sources, of various forms, at different rates, etc.). These factors impede the practices of not only processing data, but also analyzing and displaying it in an efficient manner to the user. Many efforts have been completed in the data mining and visual analytics community to create effective ways to further improve analysis and achieve the knowledge desired for better understanding. Our approach for improved big data visual analytics is two-fold, focusing on both visualization and interaction. Given geo-tagged information, we are exploring the benefits of visualizing datasets in the original geospatial domain by utilizing a virtual reality platform. After running proven analytics on the data, we intend to represent the information in a more realistic 3D setting, where analysts can achieve an enhanced situational awareness and rely on familiar perceptions to draw in-depth conclusions on the dataset. In addition, developing a human-computer interface that responds to natural user actions and inputs creates a more intuitive environment. Tasks can be performed to manipulate the dataset and allow users to dive deeper upon request, adhering to desired demands and intentions. Due to the volume and popularity of social media, we developed a 3D tool visualizing Twitter on MIT's campus for analysis. Utilizing emerging technologies of today to create a fully immersive tool that promotes visualization and interaction can help ease the process of understanding and representing big data.
READ LESS

Summary

For decades, the growth and volume of digital data collection has made it challenging to digest large volumes of information and extract underlying structure. Coined 'Big Data', massive amounts of information has quite often been gathered inconsistently (e.g from many sources, of various forms, at different rates, etc.). These factors...

READ MORE

Achieving 100,000,000 database inserts per second using Accumulo and D4M

Summary

The Apache Accumulo database is an open source relaxed consistency database that is widely used for government applications. Accumulo is designed to deliver high performance on unstructured data such as graphs of network data. This paper tests the performance of Accumulo using data from the Graph500 benchmark. The Dynamic Distributed Dimensional Data Model (D4M) software is used to implement the benchmark on a 216-node cluster running the MIT SuperCloud software stack. A peak performance of over 100,000,000 database inserts per second was achieved which is 100x larger than the highest previously published value for any other database. The performance scales linearly with the number of ingest clients, number of database servers, and data size. The performance was achieved by adapting several supercomputing techniques to this application: distributed arrays, domain decomposition, adaptive load balancing, and single-program-multiple-data programming.
READ LESS

Summary

The Apache Accumulo database is an open source relaxed consistency database that is widely used for government applications. Accumulo is designed to deliver high performance on unstructured data such as graphs of network data. This paper tests the performance of Accumulo using data from the Graph500 benchmark. The Dynamic Distributed...

READ MORE

LLSuperCloud: sharing HPC systems for diverse rapid prototyping

Summary

The supercomputing and enterprise computing arenas come from very different lineages. However, the advent of commodity computing servers has brought the two arenas closer than they have ever been. Within enterprise computing, commodity computing servers have resulted in the development of a wide range of new cloud capabilities: elastic computing, virtualization, and data hosting. Similarly, the supercomputing community has developed new capabilities in heterogeneous, massively parallel hardware and software. Merging the benefits of enterprise clouds and supercomputing has been a challenging goal. Significant effort has been expended in trying to deploy supercomputing capabilities on cloud computing systems. These efforts have resulted in unreliable, low performance solutions, which requires enormous expertise to maintain. LLSuperCloud provides a novel solution to the problem of merging enterprise cloud and supercomputing technology. More specifically LLSuperCloud reverses the traditional paradigm of attempting to deploy supercomputing capabilities on a cloud and instead deploys cloud capabilities on a supercomputer. The result is a system that can handle heterogeneous, massively parallel workloads while also providing high performance elastic computing, virtualization, and databases. The benefits of LLSuperCloud are highlighted using a mixed workload of C MPI, parallel MATLAB, Java, databases, and virtualized web services.
READ LESS

Summary

The supercomputing and enterprise computing arenas come from very different lineages. However, the advent of commodity computing servers has brought the two arenas closer than they have ever been. Within enterprise computing, commodity computing servers have resulted in the development of a wide range of new cloud capabilities: elastic computing...

READ MORE

D4M 2.0 Schema: a general purpose high performance schema for the Accumulo database

Summary

Non-traditional, relaxed consistency, triple store databases are the backbone of many web companies (e.g., Google Big Table, Amazon Dynamo, and Facebook Cassandra). The Apache Accumulo database is a high performance open source relaxed consistency database that is widely used for government applications. Obtaining the full benefits of Accumulo requires using novel schemas. The Dynamic Distributed Dimensional Data Model (D4M) [http://www.mit.edu/~kepner/D4M] provides a uniform mathematical framework based on associative arrays that encompasses both traditional (i.e., SQL) and non-traditional databases. For non-traditional databases D4M naturally leads to a general purpose schema that can be used to fully index and rapidly query every unique string in a dataset. The D4M 2.0 Schema has been applied with little or no customization to cyber, bioinformatics, scientific citation, free text, and social media data. The D4M 2.0 Schema is simple, requires minimal parsing, and achieves the highest published Accumulo ingest rates. The benefits of the D4M 2.0 Schema are independent of the D4M interface. Any interface to Accumulo can achieve these benefits by using the D4M 2.0 Schema.
READ LESS

Summary

Non-traditional, relaxed consistency, triple store databases are the backbone of many web companies (e.g., Google Big Table, Amazon Dynamo, and Facebook Cassandra). The Apache Accumulo database is a high performance open source relaxed consistency database that is widely used for government applications. Obtaining the full benefits of Accumulo requires using...

READ MORE

D4M 2.0 Schema: a general purpose high performance schema for the Accumulo database

Summary

Non-traditional, relaxed consistency, triple store databases are the backbone of many web companies (e.g., Google Big Table, Amazon Dynamo, and Facebook Cassandra). The Apache Accumulo database is a high performance open source relaxed consistency database that is widely used for government applications. Obtaining the full benefits of Accumulo requires using novel schemas. The Dynamic Distributed Dimensional Data Model (D4M) [http://www.mit.edu/~kepner/D4M] provides a uniform mathematical framework based on associative arrays that encompasses both traditional (i.e., SQL) and non-traditional databases. For non-traditional databases D4M naturally leads to a general purpose schema that can be used to fully index and rapidly query every unique string in a dataset. The D4M 2.0 Schema has been applied with little or no customization to cyber, bioinformatics, scientific citation, free text, and social media data. The D4M 2.0 Schema is simple, requires minimal parsing, and achieves the highest published Accumulo ingest rates. The benefits of the D4M 2.0 Schema are independent of the D4M interface. Any interface to Accumulo can achieve these benefits by using the D4M 2.0 Schema.
READ LESS

Summary

Non-traditional, relaxed consistency, triple store databases are the backbone of many web companies (e.g., Google Big Table, Amazon Dynamo, and Facebook Cassandra). The Apache Accumulo database is a high performance open source relaxed consistency database that is widely used for government applications. Obtaining the full benefits of Accumulo requires using...

READ MORE

LLGrid: supercomputer for sensor processing

Summary

MIT Lincoln Laboratory is a federally funded research and development center that applies advanced technology to problems of national interest. Research and development activities focus on long-term technology development as well as rapid system prototyping and demonstration. A key part of this mission is to develop and deploy advanced sensor systems. Developing the algorithms for these systems requires interactive access to large scale computing and data storage. Deploying these systems requires that the computing and storage capabilities are transportable and energy efficient. The LLGrid system of supercomputers allows hundreds of researchers simultaneous interactive access to large amounts of processing and storage for development and testing of their sensor processing algorithms. The requirements of the LLGrid user base are as diverse as the sensors they are developing: sonar, radar, infrared, optical, hyperspectral, video, bio and cyber. However, there are two common elements: delivering large amounts of data interactively to many processors and high level user interfaces that require minimal user training. The LLGrid software stack provides these capabilities on dozens of LLGrid computing clusters across Lincoln Laboratory. LLGrid systems range from very small (a few nodes) to very large (40+ racks).
READ LESS

Summary

MIT Lincoln Laboratory is a federally funded research and development center that applies advanced technology to problems of national interest. Research and development activities focus on long-term technology development as well as rapid system prototyping and demonstration. A key part of this mission is to develop and deploy advanced sensor...

READ MORE

Driving big data with big compute

Summary

Big Data (as embodied by Hadoop clusters) and Big Compute (as embodied by MPI clusters) provide unique capabilities for storing and processing large volumes of data. Hadoop clusters make distributed computing readily accessible to the Java community and MPI clusters provide high parallel efficiency for compute intensive workloads. Bringing the big data and big compute communities together is an active area of research. The LLGrid team has developed and deployed a number of technologies that aim to provide the best of both worlds. LLGrid MapReduce allows the map/reduce parallel programming model to be used quickly and efficiently in any language on any compute cluster. D4M (Dynamic Distributed Dimensional Data Model) provided a high level distributed arrays interface to the Apache Accumulo database. The accessibility of these technologies is assessed by measuring the effort to use these tools and is typically a few lines of code. The performance is assessed by measuring the insert rate into the Accumulo database. Using these tools a database insert rate of 4M inserts/second has been achieved on an 8 node cluster.
READ LESS

Summary

Big Data (as embodied by Hadoop clusters) and Big Compute (as embodied by MPI clusters) provide unique capabilities for storing and processing large volumes of data. Hadoop clusters make distributed computing readily accessible to the Java community and MPI clusters provide high parallel efficiency for compute intensive workloads. Bringing the...

READ MORE

Large scale network situational awareness via 3D gaming technology

Author:
Published in:
HPEC 2012: IEEE Conf. on High Performance Extreme Computing, 10-12 September 2012.

Summary

Obtaining situational awareness of network activity across an enterprise presents unique visualization challenges. IT analysts are required to quickly gather and correlate large volumes of disparate data to identify the existence of anomalous behavior. This paper will show how the MIT Lincoln Laboratory LLGrid Team has approached obtaining network situational awareness utilizing the Unity 3D video game engine. We have developed a 3D environment of the physical plant in the format of a networked multi player First Person Shooter (FPS) to demonstrate a virtual depiction of the current state of the network and the machines operating on the network. Within the game or virtual world an analyst or player can gather critical information on all network assets as well as perform physical system actions on machines in question. 3D gaming technology provides tools to create an environment that is both visually familiar to the player as well display immense amounts of system data in a meaningful and easy to absorb format. Our prototype system was able to monitor and display 5000 assets in ~10% of the time of our network time window.
READ LESS

Summary

Obtaining situational awareness of network activity across an enterprise presents unique visualization challenges. IT analysts are required to quickly gather and correlate large volumes of disparate data to identify the existence of anomalous behavior. This paper will show how the MIT Lincoln Laboratory LLGrid Team has approached obtaining network situational...

READ MORE

Driving big data with big compute

Summary

Big Data (as embodied by Hadoop clusters) and Big Compute (as embodied by MPI clusters) provide unique capabilities for storing and processing large volumes of data. Hadoop clusters make distributed computing readily accessible to the Java community and MPI clusters provide high parallel efficiency for compute intensive workloads. Bringing the big data and big compute communities together is an active area of research. The LLGrid team has developed and deployed a number of technologies that aim to provide the best of both worlds. LLGrid MapReduce allows the map/reduce parallel programming model to be used quickly and efficiently in any language on any compute cluster. D4M (Dynamic Distributed Dimensional Data Model) provided a high level distributed arrays interface to the Apache Accumulo database. The accessibility of these technologies is assessed by measuring the effort to use these tools and is typically a few lines of code. The performance is assessed by measuring the insert rate into the Accumulo database. Using these tools a database insert rate of 4M inserts/second has been achieved on an 8 node cluster.
READ LESS

Summary

Big Data (as embodied by Hadoop clusters) and Big Compute (as embodied by MPI clusters) provide unique capabilities for storing and processing large volumes of data. Hadoop clusters make distributed computing readily accessible to the Java community and MPI clusters provide high parallel efficiency for compute intensive workloads. Bringing the...

READ MORE