Publications

Refine Results

(Filters Applied) Clear All

Modular Aid and Power Pallet (MAPP): FY18 Energy Technical Investment Program

Published in:
MIT Lincoln Laboratory Report TIP-93

Summary

Electric power is a critical element of rapid response disaster relief efforts. Generators currently used have high failure rates and require fuel supply chains, and standardized renewable power systems are not yet available. In addition, none of these systems are designed for easy adaptation or repairs in the field to accommodate changing power needs as the relief effort progresses. To address this, the Modular Aid and Power Pallet, or MAPP, was designed to be a temporary, scalable, self-contained, user-focused power system. While some commercial systems are advertised for disaster relief systems, most are limited by mobility, custom battery assemblies (with challenges for air transport, ground mobility, or both), and the ability to power AC loads. While the first year system focused on an open architecture design with distributed DC units that could be combined to serve larger AC loads, the second year succeeded in minimizing or eliminating batteries while providing AC power for both the distributed and centralized systems. Therefore, individual modules can be distributed to power small AC loads such as laptop charging, or combined in series for larger loads such as water purification. Each module is powered by a small photovoltaic (PV) array connected to a prototype off-grid Enphase microinverter that can be used with or without energy storage. In addition, an output box for larger loads is included to provide a ground fault interrupt, under/over voltage relay, and the ability to change the system grounding to fit the needs of a more complicated system. The second year MAPP effort was divided into two phases: Phase 1 from October 2017 to March 20181 focused on refining requirements and vendor selection, and Phase 2 from March 2018 to October 20182 focusing on power electronics, working with the new Enphase microinverter, and ruggedizing the system. The end result is the Phase 2 effort has been designed, tested, and proven to form a robust AC power source that is flexible and configurable by the end user. Our testing has shown that operators can easily set up the system and adapt it to changing needs in the field.
READ LESS

Summary

Electric power is a critical element of rapid response disaster relief efforts. Generators currently used have high failure rates and require fuel supply chains, and standardized renewable power systems are not yet available. In addition, none of these systems are designed for easy adaptation or repairs in the field to...

READ MORE

3D printed conformal array antenna: simulations and measurements

Published in:
6th Int. Symp. on Phased Array Systems and Technology, PAST 2016, 18-21 October 2016.

Summary

A conformal array antenna has been investigated using a combination of 3D printer and copper plating techniques. Circular patch antenna elements were copper plated onto a 3D printed dielectric substrate made of ABS-M30 material. Measured and simulated element reflection coefficient, element gain patterns, and array scanned beam radiation patterns at L band are in good agreement.
READ LESS

Summary

A conformal array antenna has been investigated using a combination of 3D printer and copper plating techniques. Circular patch antenna elements were copper plated onto a 3D printed dielectric substrate made of ABS-M30 material. Measured and simulated element reflection coefficient, element gain patterns, and array scanned beam radiation patterns at...

READ MORE

Leading the charge - microgrids for domestic military installations

Published in:
IEEE Power & Energy Magazine, Vol. 11, No. 4, July/August 2013, pp. 40-5.

Summary

In today's interconnected battlefield, our war fighters are increasingly reliant on capabilities at domestic military installations to support critical missions, often in near real time. Many of the domestic installations of the U.S. Department of Defense (DoD) also support everything from sensitive research and development facilities such as microelectronics and biological laboratories to large industrial plants such as shipyards and aviation depots. These facilities depend on the electricity provided by the commercial electric grid. Extended-duration outages on the domestic electric grid will therefore both significantly affect the operational mission of the DoD and bring substantial economic consequences. The changing nature of electricity markets presents new opportunities for the DoD to reduce electricity costs while addressing its energy security needs. Demand response, ancillary service markets, and real-time pricing offer large consumers of electricity such as military installations a significant opportunity to use installation assets during grid-tied operation. Nevertheless, this is an opportunity the DoD can only exploit if it does so in a secure fashion, well protected from cyber threats.
READ LESS

Summary

In today's interconnected battlefield, our war fighters are increasingly reliant on capabilities at domestic military installations to support critical missions, often in near real time. Many of the domestic installations of the U.S. Department of Defense (DoD) also support everything from sensitive research and development facilities such as microelectronics and...

READ MORE

Nanosatellites for Earth environmental monitoring: the MicroMAS project

Summary

The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (34x10x10 cm, 4.5 kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately 500-km altitude. A MicroMAS flight unit is currently being developed in anticipation of a 2014 launch. A parabolic reflector is mechanically rotated as the spacecraft orbits the earth, thus directing a cross-track scanned beam with FWHM beamwidth of 2.4-degrees, yielding an approximately 20-km diameter footprint at nadir incidence from a nominal altitude of 500 km. Radiometric calibration is carried out using observations of cold space, the earth?s limb, and an internal noise diode that is weakly coupled through the RF front-end electronics. A key technology feature is the development of an ultra-compact intermediate frequency processor module for channelization, detection, and A-to-D conversion. The antenna system and RF front-end electronics are highly integrated and miniaturized. A MicroMAS-2 mission is currently being planned using a multiband spectrometer operating near 118 and 183 GHz in a sunsynchronous orbit of approximately 800-km altitude. A HyMAS- 1 (Hyperspectral Microwave Atmospheric Satellite) mission with approximately 50 channels near 118 and 183 GHz is also being planned. In this paper, the mission concept of operations will be discussed, the radiometer payload will be described, and the spacecraft subsystems (avionics, power, communications, attitude determination and control, and mechanical structures) will be summarized.
READ LESS

Summary

The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (34x10x10 cm, 4.5 kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately...

READ MORE

Microgrid study: energy security for DoD installations

Summary

Growing concerns about the vulnerability of the electric grid, uncertainty about the cost of oil, and an increase in the deployment of renewable generation on domestic military installations have all led the Department of Defense (DoD) to reconsider its strategy for providing energy security for critical domestic operations. Existing solutions typically use dedicated backup generators to service each critical load. For large installations, this can result in over 50 small generators, each servicing a low voltage feeder to an individual building. The system as a whole is typically not well integrated either internally, with nearby renewable assets, or to the larger external grid. As a result, system performance is not optimized for efficient, reactive, and sustainable operations across the installation in the event of a power outage or in response to periods of high stress on the grid. Recent advances in energy management systems and power electronics provide an opportunity to interconnect multiple sources and loads into an integrated system that can then be optimized for reliability, efficiency, and/or cost. These integrated energy systems, or microgrids, are the focus of this study. The study was performed with the goals of (1) achieving a better understanding of the current microgrid efforts across DoD installations, specifically those that were in place or underway by the end of FY11, (2) categorizing the efforts with a consistent typology based on common, measurable parameters, and (3) performing cost-benefit trades for different microgrid architectures. This report summarizes the results of several months of analysis and provides insight into opportunities for increased energy security, efficiency, and the incorporation of renewable and distributed energy resources into microgrids, as well as the factors that might facilitate or impede implementation.
READ LESS

Summary

Growing concerns about the vulnerability of the electric grid, uncertainty about the cost of oil, and an increase in the deployment of renewable generation on domestic military installations have all led the Department of Defense (DoD) to reconsider its strategy for providing energy security for critical domestic operations. Existing solutions...

READ MORE

Showing Results

1-5 of 5