Summary
Introduction At Lincoln Laboratory, we have established a three dimensional (3D) integrated circuit (IC) technology that has been developed and demonstrated over seven designs, bonding two or three active circuit layers or tiers to form monolithically integrated 3D circuits. Key features of our 3DIC technology include fully depleted SOI (FDSOI) circuit fabrication, low-temperature wafer-scale oxide-to-oxide bonding, precision wafer-to-wafer alignment, and dense unrestricted 3D vias interconnecting stacked circuit layers, successfully demonstrated in a large area 8 x 8 mm2 high-3D-via-count 1024 x 1024 visible imager. In this paper, we describe details of our bonding protocol for 150-mm diameter wafers, leading to a 50% increase in oxide-oxide bond strength and demonstration of +--0.5 am wafer-to-wafer alignment accuracy. We have established design rules for our 3DIC technology, have quantified process factors limiting our design-rule 3D via pitch, and have demonstrated next generation 3D vias with a 2x size reduction, stacked 3D vias, a backmetal interconnect process to reduce 2D circuit exclusion zones, and buried oxide (BOX) vias to allow both electrical and thermal substrate connections. All of these improvements will allow us to continue to reduce minimum 3D via pitch and reduce 2D layout limitations, making our 3DIC technology more attractive to a broader range of applications.