Publications
FDSOI process technology for subthreshold-operation ultra-low power electronics
Summary
Summary
Ultralow-power electronics will expand the technological capability of handheld and wireless devices by dramatically improving battery life and portability. In addition to innovative low-power design techniques, a complementary process technology is required to enable the highest performance devices possible while maintaining extremely low power consumption. Transistors optimized for subthreshold operation...
Work-function-tuned TiN metal gate FDSOI transistors for subthreshold operation
Summary
Summary
The effective work function of a reactively sputtered TiN metal gate is shown to be tunable from 4.30 to 4.65 eV. The effective work function decreases with nitrogen flow during reactive sputter deposition. Nitrogen annealing increases the effective work function and reduces Dit. Thinner TiN improves the variation in effective...
SOI-enabled three-dimensional integrated-circuit technology
Summary
Summary
We have demonstrated a new 3D device interconnect approach, with direct back side via connection to a transistor in a 3D stack, resulting in a reduced 3D footprint by an estimated ~40% as well as potential for lower series resistance. We have demonstrated high yield 3D through-oxide-via (TOV) with a...
Improvement of SOI MOSFET RF performance by implant optimization
Summary
Summary
The characteristics of silicon on insulator MOSFETs are modified to enhance the RF performance by varying channel implants. Without adding new masks or fabrication steps to the standard CMOS process, this approach can be easily applied in standard foundry fabrication. The transconductance, output resistance, and breakdown voltage can be increased...
FDSOI process technology for subthreshold-operation ultralow-power electronics
Summary
Summary
Ultralow-power electronics will expand the technological capability of handheld and wireless devices by dramatically improving battery life and portability. In addition to innovative low-power design techniques, a complementary process technology is required to enable the highest performance devices possible while maintaining extremely low power consumption. Transistors optimized for subthreshold operation...
Effects of ionizing radiation on digital single event transients in a 180-nm fully depleted SOI process
Summary
Summary
Effects of ionizing radiation on single event transients are reported for Fully Depleted SOI (FDSOI) technology using experiments and simulations. Logic circuits, i.e. CMOS inverter chains, were irradiated with cobalt-60 gamma radiation. When charge is induced in the n-channel FET with laser-probing techniques, laser-induced transients widen with increased total dose...
Three-dimensional integration technology for advanced focal planes
Summary
Summary
We have developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. This paper describes the 3D technology and discusses some of the advanced focal plane arrays that have been built using...
Channel engineering of SOI MOSFETs for RF applications
Summary
Summary
Channel engineering of SOI MOSFETs is explored by altering ion implantation without adding any new fabrication steps to the standard CMOS process. The effects of implantation on characteristics important for RF applications, such as transconductance, output resistance, breakdown voltage, are compared. Data show that the best overall RF MOSFET has...
Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits
Summary
Summary
In this work, we modified our wafer-scale 3D integration technique, originally developed for Si, to hybridize InP-based image sensor arrays with Si readout circuits. InGaAs image arrays based on the InGaAs layer grown on InP substrates were fabricated in the same processing line as silicon-on-insulator (SOI) readout circuits. The finished...
High density plasma etching of titanium nitride metal gate electrodes for fully depleted silicon-on-insulator subthreshold transistor integration
Summary
Summary
Etching of TiN metal gate materials as a part of an integrated flow to fabricate fully depleted silicon-on-insulator ultralow-power transistors is reported. TiN etching is characterized as a function of source power, bias power, gas composition, and substrate temperature in a high density inductively coupled plasma reactor. Under the conditions...