Publications

Refine Results

(Filters Applied) Clear All

Directly deposited optical-blocking filters for single-photon x-ray imaging spectroscopy

Published in:
J. Astron. Telesc. Instrum. Syst., Vol. 3, No. 3 (2017), 036001.

Summary

Directly deposited optical-blocking filters (DD OBFs) have the potential to improve filter performance and lower risk and cost for future x-ray imaging spectroscopy missions. However, they have not been fully characterized on high-performance charge coupled devices (CCDs). This paper reports the results of DD OBFs processed on high-performance photon-counting CCDs. It is found that CCD performance is not degraded by deposition of such filters. X-ray and optical transmission through the OBF is characterized and found to match theoretical expectation. Light-leaks through pinholes and the side and back surfaces are found to lower the optical extinction ratio; various coating processes are developed to resolve these issues.
READ LESS

Summary

Directly deposited optical-blocking filters (DD OBFs) have the potential to improve filter performance and lower risk and cost for future x-ray imaging spectroscopy missions. However, they have not been fully characterized on high-performance charge coupled devices (CCDs). This paper reports the results of DD OBFs processed on high-performance photon-counting CCDs...

READ MORE

Germanium CCDs for large-format SWIR and x-ray imaging

Summary

Germanium exhibits high sensitivity to short-wave infrared (SWIR) and X-ray radiation, making it an interesting candidate for imaging applications in these bands. Recent advances in germanium processing allow for high-quality charge-coupled devices (CCDs) to be realized in this material. In this article, we discuss our evaluation of germanium as an absorber material for CCDs via fabrication and analysis of discrete devices such as diodes, metal-insulator-semiconductor capacitors, and buried-channel metal-oxide-semiconductor field-effect transistors (MOSFETs). We then describe fabrication of our first imaging device on germanium, a 32 x 1 x 8.1 um linear shift register. Based on this work, we find that germanium is a promising material for CCDs imaging in the SWIR and X-ray bands.
READ LESS

Summary

Germanium exhibits high sensitivity to short-wave infrared (SWIR) and X-ray radiation, making it an interesting candidate for imaging applications in these bands. Recent advances in germanium processing allow for high-quality charge-coupled devices (CCDs) to be realized in this material. In this article, we discuss our evaluation of germanium as an...

READ MORE

The TESS camera: modeling and measurements with deep depletion devices

Summary

The Transiting Exoplanet Survey Satellite, a NASA Explorer-class mission in development, will discover planets around nearby stars, most notably Earth-like planets with potential for follow up characterization. The all-sky survey requires a suite of four wide field-of-view cameras with sensitivity across a broad spectrum. Deep depletion CCDs with a silicon layer of 100 um thickness serve as the camera detectors, providing enhanced performance in the red wavelengths for sensitivity to cooler stars. The performance of the camera is critical for the mission objectives, with both the optical system and the CCD detectors contributing to the realized image quality. Expectations for image quality are studied using a combination of optical ray tracing in Zemax and simulations in Matlab to account for the interaction of the incoming photons with the 100 um silicon layer. The simulations include a probabilistic model to determine the depth of travel in the silicon before the photons are converted to photo-electrons, and a Monte Carlo approach to charge diffusion. The charge diffusion model varies with the remaining depth for the photo-electron to traverse and the strength of the intermediate electric field. The simulations are compared with laboratory measurements acquired by an engineering unit camera with the TESS optical design and deep depletion CCDs. In this paper we describe the performance simulations and the corresponding measurements taken with the engineering unit camera, and discuss where the models agree well in predicted trends and where there are differences compared to observations.
READ LESS

Summary

The Transiting Exoplanet Survey Satellite, a NASA Explorer-class mission in development, will discover planets around nearby stars, most notably Earth-like planets with potential for follow up characterization. The all-sky survey requires a suite of four wide field-of-view cameras with sensitivity across a broad spectrum. Deep depletion CCDs with a silicon...

READ MORE

Directly-deposited blocking filters for high-performance silicon x-ray detectors

Published in:
SPIE, Vol. 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, July 2016, 99054C.

Summary

Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E < 1 keV) X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.
READ LESS

Summary

Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other...

READ MORE

Enhancing the far-ultraviolet sensitivity of silicon complementary metal oxide semiconductor imaging arrays

Summary

We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures, which revealed a promising QE in the 100 to 200 nm range. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include the following: (1) representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory; (2) preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; (3) detector fabrication was completed through the pre-MBE step; and (4) initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments.
READ LESS

Summary

We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures...

READ MORE

Development of CCDs for REXIS on OSIRIS-REx

Summary

The Regolith x-ray Imaging Spectrometer (REXIS) is a coded-aperture soft x-ray imaging instrument on the OSIRIS-REx spacecraft to be launched in 2016. The spacecraft will fly to and orbit the near-Earth asteroid Bennu, while REXIS maps the elemental distribution on the asteroid using x-ray fluorescence. The detector consists of a 2x2 array of back-illuminated 1kX1k frame transfer CCDs with a flight heritage to Suzaku and Chandra. The back surface has a thing p+-doped layer deposited by molecular-beam epitaxy (MBE) for maximum quantum efficiency and energy resolution at low x-ray energies. The CCDs also feature an integrated optical-blocking filter (OBF) to suppress visible and near-infrared light. The OBF is an aluminum film deposited directly on the CCD back surface and is mechanically more robust and less absorptive of x-rays than the conventional free-standing aluminum-coated polymer films. The CCDs have charge transfer inefficiencies of less than 10^-6, and dark current of le-/pixel/second at the REXIS operating temperature of -60 degrees C. The resulting spectral resolution is 115 eV at 2 KeV. The extinction ratio of the filter is ~10^12 at 625 nm.
READ LESS

Summary

The Regolith x-ray Imaging Spectrometer (REXIS) is a coded-aperture soft x-ray imaging instrument on the OSIRIS-REx spacecraft to be launched in 2016. The spacecraft will fly to and orbit the near-Earth asteroid Bennu, while REXIS maps the elemental distribution on the asteroid using x-ray fluorescence. The detector consists of a...

READ MORE

Three-dimensional integration technology for advanced focal planes

Summary

We have developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. This paper describes the 3D technology and discusses some of the advanced focal plane arrays that have been built using it.
READ LESS

Summary

We have developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. This paper describes the 3D technology and discusses some of the advanced focal plane arrays that have been built using...

READ MORE

Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits

Summary

In this work, we modified our wafer-scale 3D integration technique, originally developed for Si, to hybridize InP-based image sensor arrays with Si readout circuits. InGaAs image arrays based on the InGaAs layer grown on InP substrates were fabricated in the same processing line as silicon-on-insulator (SOI) readout circuits. The finished 150-mm-diameter InP wafer was then directly bonded to the SOI wafer and interconnected to the Si readout circuits by 3D vias. A 1024 x 1024 diode array with 8-um pixel size is demonstrated. This work shows the wafer-scale 3D integration of a compound semiconductor with Si.
READ LESS

Summary

In this work, we modified our wafer-scale 3D integration technique, originally developed for Si, to hybridize InP-based image sensor arrays with Si readout circuits. InGaAs image arrays based on the InGaAs layer grown on InP substrates were fabricated in the same processing line as silicon-on-insulator (SOI) readout circuits. The finished...

READ MORE

A 4-side tileable back illuminated 3D-integrated Mpixel CMOS image sensor

Summary

The dominant trend with conventional image sensors is toward scaled-down pixel sizes to increase spatial resolution and decrease chip size and cost. While highly capable chips, these monolithic image sensors devote substantial perimeter area to signal acquisition and control circuitry and trade off pixel complexity for fill factor. For applications such as wide-area persistent surveillance, reconnaissance, and astronomical sky surveys it is desirable to have simultaneous near-real-time imagery with fast, wide field-of-view coverage. Since the fabrication of a complex large-format sensor on a single piece of silicon is cost and yield-prohibitive and is limited to the wafer size, for these applications many smaller-sized image sensors are tiled together to realize very large arrays. Ideally the tiled image sensor has no missing pixels and the pixel pitch is continuous across the seam to minimize loss of information content. CCD-based imagers have been favored for these large mosaic arrays because of their low noise and high sensitivity, but CMOS-based image sensors bring architectural benefits, including electronic shutters, enhanced radiation tolerance, and higher data-rate digital outputs that are more easily scalable to larger arrays. In this report the first back-illuminated, 1 Mpixel, 3D-integrated CMOS image sensor with 8 mum-pitch 3D via connections. The chip employs a conventional pixel layout and requires 500 mum of perimeter silicon to house the support circuitry and protect the array from saw damage. In this paper we present a back-illuminated 1 Mpixel CMOS image sensor tile that includes a 64-channel vertically integrated ADC chip stack, and requires only a few pixels of silicon perimeter to the pixel array. The tile and system connector design support 4-side abuttability and fast burst data rates.
READ LESS

Summary

The dominant trend with conventional image sensors is toward scaled-down pixel sizes to increase spatial resolution and decrease chip size and cost. While highly capable chips, these monolithic image sensors devote substantial perimeter area to signal acquisition and control circuitry and trade off pixel complexity for fill factor. For applications...

READ MORE

Scaling three-dimensional SOI integrated-circuit technology

Published in:
2007 IEEE Int. SOI Conf. Proc., 1-4 October 2007, pp. 87-88.

Summary

Introduction At Lincoln Laboratory, we have established a three dimensional (3D) integrated circuit (IC) technology that has been developed and demonstrated over seven designs, bonding two or three active circuit layers or tiers to form monolithically integrated 3D circuits. Key features of our 3DIC technology include fully depleted SOI (FDSOI) circuit fabrication, low-temperature wafer-scale oxide-to-oxide bonding, precision wafer-to-wafer alignment, and dense unrestricted 3D vias interconnecting stacked circuit layers, successfully demonstrated in a large area 8 x 8 mm2 high-3D-via-count 1024 x 1024 visible imager. In this paper, we describe details of our bonding protocol for 150-mm diameter wafers, leading to a 50% increase in oxide-oxide bond strength and demonstration of +--0.5 am wafer-to-wafer alignment accuracy. We have established design rules for our 3DIC technology, have quantified process factors limiting our design-rule 3D via pitch, and have demonstrated next generation 3D vias with a 2x size reduction, stacked 3D vias, a backmetal interconnect process to reduce 2D circuit exclusion zones, and buried oxide (BOX) vias to allow both electrical and thermal substrate connections. All of these improvements will allow us to continue to reduce minimum 3D via pitch and reduce 2D layout limitations, making our 3DIC technology more attractive to a broader range of applications.
READ LESS

Summary

Introduction At Lincoln Laboratory, we have established a three dimensional (3D) integrated circuit (IC) technology that has been developed and demonstrated over seven designs, bonding two or three active circuit layers or tiers to form monolithically integrated 3D circuits. Key features of our 3DIC technology include fully depleted SOI (FDSOI)...

READ MORE

Showing Results

1-10 of 18