Publications
Vertically stacked RF switches by wafer-scale three-dimensional integration
Summary
Summary
Vertically stacked RF switches implemented by wafer-scale three-dimensional (3D) integration of three completely fabricated silicon-on-insulator wafers are demonstrated. The individual switch performance was maintained through the 3D integration process while the signal path is shortened by vertical interconnects. The footprint of the switch can be shrunk in proportion to the...
Radiation effects in 3D integrated SOI SRAM circuits
Summary
Summary
Radiation effects are presented for the first time for vertically integrated 3 x 64 -kb SOI SRAM circuits fabricated using the 3D process developed at MIT Lincoln Laboratory. Three fully-fabricated 2D circuit wafers are stacked using standard CMOS fabrication techniques including thin-film planarization, layer alignment and oxide bonding. Micron-scale dense...
SET characterization in logic circuits fabricated in a 3DIC technology
Summary
Summary
Single event transients are characterized for the first time in logic gate circuits fabricated in a novel 3DIC technology where SET test circuits are vertically integrated on three tiers in a 20-um-thick layer. This 3D technology is extremely will suited for high-density circuit integration because of the small dimension the...
SOI circuits powered by embedded solar cell
Summary
Summary
Solar cells embedded in the SOI substrate were successfully used as the sole energy source to power a ring oscillator fabricated using an ultra-low-power fully depleted SOI process on the same wafer. The speed of the ring oscillator increased with increasing light intensity and showed a fastest oscillation with a...
SOI-enabled three-dimensional integrated-circuit technology
Summary
Summary
We have demonstrated a new 3D device interconnect approach, with direct back side via connection to a transistor in a 3D stack, resulting in a reduced 3D footprint by an estimated ~40% as well as potential for lower series resistance. We have demonstrated high yield 3D through-oxide-via (TOV) with a...
Improvement of SOI MOSFET RF performance by implant optimization
Summary
Summary
The characteristics of silicon on insulator MOSFETs are modified to enhance the RF performance by varying channel implants. Without adding new masks or fabrication steps to the standard CMOS process, this approach can be easily applied in standard foundry fabrication. The transconductance, output resistance, and breakdown voltage can be increased...
Three-dimensional integration technology for advanced focal planes
Summary
Summary
We have developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. This paper describes the 3D technology and discusses some of the advanced focal plane arrays that have been built using...
Channel engineering of SOI MOSFETs for RF applications
Summary
Summary
Channel engineering of SOI MOSFETs is explored by altering ion implantation without adding any new fabrication steps to the standard CMOS process. The effects of implantation on characteristics important for RF applications, such as transconductance, output resistance, breakdown voltage, are compared. Data show that the best overall RF MOSFET has...
Characterization of a three-dimensional SOI integrated-circuit technology
Summary
Summary
At Lincoln Laboratory, we have established a three dimensional (3D) integrated circuit (IC) technology that has been developed and demonstrated over eight designs, bonding two or three active circuit layers or tiers to form monolithically integrated 3D circuits. This technology has been used to successfully demonstrate a large-area 8 x...
Scaling three-dimensional SOI integrated-circuit technology
Summary
Summary
Introduction At Lincoln Laboratory, we have established a three dimensional (3D) integrated circuit (IC) technology that has been developed and demonstrated over seven designs, bonding two or three active circuit layers or tiers to form monolithically integrated 3D circuits. Key features of our 3DIC technology include fully depleted SOI (FDSOI)...