Publications
Tagged As
The FAA Terminal Convective Weather Forecast product: scale separation filter optimization
Summary
Summary
A large percentage of serious air traffic delay at major airports in the warm season is caused by convective weather. The FAA Convective Weather Product Development team (PDT) has developed a Terminal Convective Weather Forecast product (TCWF) that can account for short-term (out to 60 min) systematic growth and decay...
A case study of mid-level turbulence outside regions of active convection
Summary
Summary
Historically, the principal focus of research on clear-air turbulence of concern to aircraft has been on jet stream and mountain (orographic) induced turbulence. Relatively little research has focused on the turbulence hazard outside of, but in the vicinity of, convective storms, known as Convective Induced Turbulence (CIN). In this paper...
The thunderstorm penetration/deviation decision in the terminal area
Summary
Summary
During thunderstorm periods, terminal air traffic planners make a number of key decisions. They decide when to close and re-open arrival fixes, departure fixes, and runways; they anticipate and execute changes in runway configuration; they negotiate routing and flow rate decisions with Air Route Traffic Control Center (ART CC) traffic...
Achieving higher integrity in NEXRAD products through multi-sensor integration
Summary
Summary
The initial operational concept for the NEXRAD focused on support for the operational forecaster based on longstanding practice in use of weather radars by the National Weather Service (NWS) and Air Force as well as difficulties in developing reliable, fully automated phenomena detection algorithms [Crum, 1998]. By contrast, achieving high...
The benefits of using NEXRAD vertically integrated liquid water as an aviation weather product
Summary
Summary
Over the past five years in which the Integrated Terminal Weather System (ITWS) testbed prototypes have been operational, there have been regular discrepancies noticed between the ASR–9 six–level precipitation product and the NEXRAD six–level maximum composite reflectivity product. (1. The NEXRAD composite product used in this study is the NEXRAD...
Optimizing the ITWS algorithm designed to remove anomalous propagation ground clutter from the ASR-9 precipitation product
Summary
Summary
A key product within the Integrated Terminal Weather System (ITWS) Initial Operating Capability (IOC) product suite removes anomalous propagation (AP) ground clutter from the ASR-9 precipitation product. This has been identified as a critical component of ITWS due to the frequent occurrence of AP when storms or outflows move over...
A refinement of thunderstorm climatology for the terminal radar control airspace
Summary
Summary
Convective storms pose a significant threat to aviation safety, and often result in substantial fl ight delays for the commercial aviation industry. The overall impact of these storms is typically based on thunderstorm climatologies and are often one of the factors used in decisions by the US government regarding the...
Addressing the weather delay problems of the New York City airports with the Integrated Terminal Weather System
Summary
Summary
The three major New York City (NYC) air carrier airports (Kennedy, LaGuardia, Newark) currently experience high delays due to adverse terminal weather, both in an absolute sense and relative to other major airport complexes. Significantly expanding the NYC airports (e.g., by adding new runways) to reduce delays is not feasible...
Thunderstorm induced gravity waves as a potential hazard to commercial aircraft
Summary
Summary
Under certain atmospheric conditions, thunderstorm development can induce a phenomenon known as gravity waves (i.e., buoyancy or density waves). These waves are characterized by alternating regions of convergence and divergence over a relatively short distance. Such aerodynamic shear can become hazardous to air traffic if the shear contained within the...
The Terminal Convective Weather Forecast demonstration at the DFW International Airport
Summary
Summary
The FAA Convective Weather Product Development Team (PDT) is tasked with developing products for convective weather forecasts for aviation users. The overall product development is a collaborative effort between scientists from MIT Lincoln Laboratory (MIT/LL), the National Center for Atmospheric Research (NCAR), and the National Severe Storms Laboratory (NSSL). As...