Publications
Tagged As
Measuring the impact of Spectre and Meltdown
Summary
Summary
The Spectre and Meltdown flaws in modern microprocessors represent a new class of attacks that have been difficult to mitigate. The mitigations that have been proposed have known performance impacts. The reported magnitude of these impacts varies depending on the industry sector and expected workload characteristics. In this paper, we...
Lessons learned from a decade of providing interactive, on-demand high performance computing to scientists and engineers
Summary
Summary
For decades, the use of HPC systems was limited to those in the physical sciences who had mastered their domain in conjunction with a deep understanding of HPC architectures and algorithms. During these same decades, consumer computing device advances produced tablets and smartphones that allow millions of children to interactively...
Performance measurements of supercomputing and cloud storage solutions
Summary
Summary
Increasing amounts of data from varied sources, particularly in the fields of machine learning and graph analytics, are causing storage requirements to grow rapidly. A variety of technologies exist for storing and sharing these data, ranging from parallel file systems used by supercomputers to distributed block storage systems found in...
A cloud-based brain connectivity analysis tool
Summary
Summary
With advances in high throughput brain imaging at the cellular and sub-cellular level, there is growing demand for platforms that can support high performance, large-scale brain data processing and analysis. In this paper, we present a novel pipeline that combines Accumulo, D4M, geohashing, and parallel programming to manage large-scale neuron...
Learning by doing, High Performance Computing education in the MOOC era
Summary
Summary
The High Performance Computing (HPC) community has spent decades developing tools that teach practitioners to harness the power of parallel and distributed computing. To create scalable and flexible educational experiences for practitioners in all phases of a career, we turn to Massively Open Online Courses (MOOCs). We detail the design...
Julia implementation of the Dynamic Distributed Dimensional Data Model
Summary
Summary
Julia is a new language for writing data analysis programs that are easy to implement and run at high performance. Similarly, the Dynamic Distributed Dimensional Data Model (D4M) aims to clarify data analysis operations while retaining strong performance. D4M accomplishes these goals through a composable, unified data model on associative...
Designing a new high performance computing education strategy for professional scientists and engineers
Summary
Summary
For decades the High Performance Computing (HPC) community has used web content, workshops and embedded HPC scientists to enable practitioners to harness the power of parallel and distributed computing. The most successful approaches, face-to-face tutorials and embedded professionals, don't scale. To create scalable, flexible, educational experiences for practitioners in all...
In-storage embedded accelerator for sparse pattern processing
Summary
Summary
We present a novel architecture for sparse pattern processing, using flash storage with embedded accelerators. Sparse pattern processing on large data sets is the essence of applications such as document search, natural language processing, bioinformatics, subgraph matching, machine learning, and graph processing. One slice of our prototype accelerator is capable...
Enhancing HPC security with a user-based firewall
Summary
Summary
High Performance Computing (HPC) systems traditionally allow their users unrestricted use of their internal network. While this network is normally controlled enough to guarantee privacy without the need for encryption, it does not provide a method to authenticate peer connections. Protocols built upon this internal network, such as those used...
Novel graph processor architecture, prototype system, and results
Summary
Summary
Graph algorithms are increasingly used in applications that exploit large databases. However, conventional processor architectures are inadequate for handling the throughput and memory requirements of graph computation. Lincoln Laboratory's graph-processor architecture represents a rethinking of parallel architectures for graph problems. Our processor utilizes innovations that include a sparse matrix-based graph...