Publications

Refine Results

(Filters Applied) Clear All

Enhancing HPC security with a user-based firewall

Summary

High Performance Computing (HPC) systems traditionally allow their users unrestricted use of their internal network. While this network is normally controlled enough to guarantee privacy without the need for encryption, it does not provide a method to authenticate peer connections. Protocols built upon this internal network, such as those used in MPI, Lustre, Hadoop, or Accumulo, must provide their own authentication at the application layer. Many methods have been employed to perform this authentication, such as operating system privileged ports, Kerberos, munge, TLS, and PKI certificates. However, support for all of these methods requires the HPC application developer to include support and the user to configure and enable these services. The user-based firewall capability we have prototyped enables a set of rules governing connections across the HPC internal network to be put into place using Linux netfilter. By using an operating system-level capability, the system is not reliant on any developer or user actions to enable security. The rules we have chosen and implemented are crafted to not impact the vast majority of users and be completely invisible to them. Additionally, we have measured the performance impact of this system under various workloads.
READ LESS

Summary

High Performance Computing (HPC) systems traditionally allow their users unrestricted use of their internal network. While this network is normally controlled enough to guarantee privacy without the need for encryption, it does not provide a method to authenticate peer connections. Protocols built upon this internal network, such as those used...

READ MORE

Benchmarking SciDB data import on HPC systems

Summary

SciDB is a scalable, computational database management system that uses an array model for data storage. The array data model of SciDB makes it ideally suited for storing and managing large amounts of imaging data. SciDB is designed to support advanced analytics in database, thus reducing the need for extracting data for analysis. It is designed to be massively parallel and can run on commodity hardware in a high performance computing (HPC) environment. In this paper, we present the performance of SciDB using simulated image data. The Dynamic Distributed Dimensional Data Model (D4M) software is used to implement the benchmark on a cluster running the MIT SuperCloud software stack. A peak performance of 2.2M database inserts per second was achieved on a single node of this system. We also show that SciDB and the D4M toolbox provide more efficient ways to access random sub-volumes of massive datasets compared to the traditional approaches of reading volumetric data from individual files. This work describes the D4M and SciDB tools we developed and presents the initial performance results. This performance was achieved by using parallel inserts, a in-database merging of arrays as well as supercomputing techniques, such as distributed arrays and single-program-multiple-data programming.
READ LESS

Summary

SciDB is a scalable, computational database management system that uses an array model for data storage. The array data model of SciDB makes it ideally suited for storing and managing large amounts of imaging data. SciDB is designed to support advanced analytics in database, thus reducing the need for extracting...

READ MORE

Julia implementation of the Dynamic Distributed Dimensional Data Model

Published in:
HPEC 2016: IEEE Conf. on High Performance Extreme Computing, 13-15 September 2016.

Summary

Julia is a new language for writing data analysis programs that are easy to implement and run at high performance. Similarly, the Dynamic Distributed Dimensional Data Model (D4M) aims to clarify data analysis operations while retaining strong performance. D4M accomplishes these goals through a composable, unified data model on associative arrays. In this work, we present an implementation of D4M in Julia and describe how it enables and facilitates data analysis. Several experiments showcase scalable performance in our new Julia version as compared to the original Matlab implementation.
READ LESS

Summary

Julia is a new language for writing data analysis programs that are easy to implement and run at high performance. Similarly, the Dynamic Distributed Dimensional Data Model (D4M) aims to clarify data analysis operations while retaining strong performance. D4M accomplishes these goals through a composable, unified data model on associative...

READ MORE

LLMapReduce: multi-level map-reduce for high performance data analysis

Summary

The map-reduce parallel programming model has become extremely popular in the big data community. Many big data workloads can benefit from the enhanced performance offered by supercomputers. LLMapReduce provides the familiar map-reduce parallel programming model to big data users running on a supercomputer. LLMapReduce dramatically simplifies map-reduce programming by providing simple parallel programming capability in one line of code. LLMapReduce supports all programming languages and many schedulers. LLMapReduce can work with any application without the need to modify the application. Furthermore, LLMapReduce can overcome scaling limits in the map-reduce parallel programming model via options that allow the user to switch to the more efficient single-program-multiple-data (SPMD) parallel programming model. These features allow users to reduce the computational overhead by more than 10x compared to standard map-reduce for certain applications. LLMapReduce is widely used by hundreds of users at MIT. Currently LLMapReduce works with several schedulers such as SLURM, Grid Engine and LSF.
READ LESS

Summary

The map-reduce parallel programming model has become extremely popular in the big data community. Many big data workloads can benefit from the enhanced performance offered by supercomputers. LLMapReduce provides the familiar map-reduce parallel programming model to big data users running on a supercomputer. LLMapReduce dramatically simplifies map-reduce programming by providing...

READ MORE

Scalability of VM provisioning systems

Summary

Virtual machines and virtualized hardware have been around for over half a century. The commoditization of the x86 platform and its rapidly growing hardware capabilities have led to recent exponential growth in the use of virtualization both in the enterprise and high performance computing (HPC). The startup time of a virtualized environment is a key performance metric for high performance computing in which the runtime of any individual task is typically much shorter than the lifetime of a virtualized service in an enterprise context. In this paper, a methodology for accurately measuring the startup performance on an HPC system is described. The startup performance overhead of three of the most mature, widely deployed cloud management frameworks (OpenStack, OpenNebula, and Eucalyptus) is measured to determine their suitability for workloads typically seen in an HPC environment. A 10x performance difference is observed between the fastest (Eucalyptus) and the slowest (OpenNebula) framework. This time difference is primarily due to delays in waiting on networking in the cloud-init portion of the startup. The methodology and measurements presented should facilitate the optimization of startup across a variety of virtualization environments.
READ LESS

Summary

Virtual machines and virtualized hardware have been around for over half a century. The commoditization of the x86 platform and its rapidly growing hardware capabilities have led to recent exponential growth in the use of virtualization both in the enterprise and high performance computing (HPC). The startup time of a...

READ MORE

Sampling operations on big data

Published in:
2015 Asilomar Conf. on Signals, Systems and Computers, 8-11 November 2015.

Summary

The 3Vs -- Volume, Velocity and Variety -- of Big Data continues to be a large challenge for systems and algorithms designed to store, process and disseminate information for discovery and exploration under real-time constraints. Common signal processing operations such as sampling and filtering, which have been used for decades to compress signals are often undefined in data that is characterized by heterogeneity, high dimensionality, and lack of known structure. In this article, we describe and demonstrate an approach to sample large datasets such as social media data. We evaluate the effect of sampling on a common predictive analytic: link prediction. Our results indicate that greatly sampling a dataset can still yield meaningful link prediction results.
READ LESS

Summary

The 3Vs -- Volume, Velocity and Variety -- of Big Data continues to be a large challenge for systems and algorithms designed to store, process and disseminate information for discovery and exploration under real-time constraints. Common signal processing operations such as sampling and filtering, which have been used for decades...

READ MORE

Big data strategies for data center infrastructure management using a 3D gaming platform

Summary

High Performance Computing (HPC) is intrinsically linked to effective Data Center Infrastructure Management (DCIM). Cloud services and HPC have become key components in Department of Defense and corporate Information Technology competitive strategies in the global and commercial spaces. As a result, the reliance on consistent, reliable Data Center space is more critical than ever. The costs and complexity of providing quality DCIM are constantly being tested and evaluated by the United States Government and companies such as Google, Microsoft and Facebook. This paper will demonstrate a system where Big Data strategies and 3D gaming technology is leveraged to successfully monitor and analyze multiple HPC systems and a lights-out modular HP EcoPOD 240a Data Center on a singular platform. Big Data technology and a 3D gaming platform enables the relative real time monitoring of 5000 environmental sensors, more than 3500 IT data points and display visual analytics of the overall operating condition of the Data Center from a command center over 100 miles away. In addition, the Big Data model allows for in depth analysis of historical trends and conditions to optimize operations achieving even greater efficiencies and reliability.
READ LESS

Summary

High Performance Computing (HPC) is intrinsically linked to effective Data Center Infrastructure Management (DCIM). Cloud services and HPC have become key components in Department of Defense and corporate Information Technology competitive strategies in the global and commercial spaces. As a result, the reliance on consistent, reliable Data Center space is...

READ MORE

Using a power law distribution to describe big data

Published in:
HPEC 2015: IEEE Conf. on High Performance Extreme Computing, 15-17 September 2015.

Summary

The gap between data production and user ability to access, compute and produce meaningful results calls for tools that address the challenges associated with big data volume, velocity and variety. One of the key hurdles is the inability to methodically remove expected or uninteresting elements from large data sets. This difficulty often wastes valuable researcher and computational time by expending resources on uninteresting parts of data. Social sensors, or sensors which produce data based on human activity, such as Wikipedia, Twitter, and Facebook have an underlying structure which can be thought of as having a Power Law distribution. Such a distribution implies that few nodes generate large amounts of data. In this article, we propose a technique to take an arbitrary dataset and compute a power law distributed background model that bases its parameters on observed statistics. This model can be used to determine the suitability of using a power law or automatically identify high degree nodes for filtering and can be scaled to work with big data.
READ LESS

Summary

The gap between data production and user ability to access, compute and produce meaningful results calls for tools that address the challenges associated with big data volume, velocity and variety. One of the key hurdles is the inability to methodically remove expected or uninteresting elements from large data sets. This...

READ MORE

Parallel vectorized algebraic AES in MATLAB for rapid prototyping of encrypted sensor processing algorithms and database analytics

Published in:
HPEC 2015: IEEE Conf. on High Performance Extreme Computing, 15-17 September 2015.

Summary

The increasing use of networked sensor systems and networked databases has led to an increased interest in incorporating encryption directly into sensor algorithms and database analytics. MATLAB is the dominant tool for rapid prototyping of sensor algorithms and has extensive database analytics capabilities. The advent of high level and high performance Galois Field mathematical environments allows encryption algorithms to be expressed succinctly and efficiently. This work leverages the Galois Field primitives found the MATLAB Communication Toolbox to implement a mode of the Advanced Encrypted Standard (AES) based on first principals mathematics. The resulting implementation requires 100x less code than standard AES implementations and delivers speed that is effective for many design purposes. The parallel version achieves speed comparable to native OpenSSL on a single node and is sufficient for real-time prototyping of many sensor processing algorithms and database analytics.
READ LESS

Summary

The increasing use of networked sensor systems and networked databases has led to an increased interest in incorporating encryption directly into sensor algorithms and database analytics. MATLAB is the dominant tool for rapid prototyping of sensor algorithms and has extensive database analytics capabilities. The advent of high level and high...

READ MORE

Sampling large graphs for anticipatory analytics

Published in:
HPEC 2015: IEEE Conf. on High Performance Extreme Computing, 15-17 September 2015.

Summary

The characteristics of Big Data - often dubbed the 3V's for volume, velocity, and variety - will continue to outpace the ability of computational systems to process, store, and transmit meaningful results. Traditional techniques for dealing with large datasets often include the purchase of larger systems, greater human-in-the-loop involvement, or more complex algorithms. We are investigating the use of sampling to mitigate these challenges, specifically sampling large graphs. Often, large datasets can be represented as graphs where data entries may be edges, and vertices may be attributes of the data. In particular, we present the results of sampling for the task of link prediction. Link prediction is a process to estimate the probability of a new edge forming between two vertices of a graph, and it has numerous application areas in understanding social or biological networks. In this paper we propose a series of techniques for the sampling of large datasets. In order to quantify the effect of these techniques, we present the quality of link prediction tasks on sampled graphs, and the time saved in calculating link prediction statistics on these sampled graphs.
READ LESS

Summary

The characteristics of Big Data - often dubbed the 3V's for volume, velocity, and variety - will continue to outpace the ability of computational systems to process, store, and transmit meaningful results. Traditional techniques for dealing with large datasets often include the purchase of larger systems, greater human-in-the-loop involvement, or...

READ MORE