Publications
D4M and large array databases for management and analysis of large biomedical imaging data
Summary
Summary
Advances in medical imaging technologies have enabled the acquisition of increasingly large datasets. Current state-of-the-art confocal or multi-photon imaging technology can produce biomedical datasets in excess of 1 TB per dataset. Typical approaches for analyzing large datasets rely on downsampling the original datasets or leveraging distributed computing resources where small...
Secure and resilient cloud computing for the Department of Defense
Summary
Summary
Cloud computing offers substantial benefits to its users: the ability to store and access massive amounts of data, on-demand delivery of computing services, the capability to widely share information, and the scalability of resource usage. Lincoln Laboratory is developing technology that will strengthen the security and resilience of cloud computing...
Scalability of VM provisioning systems
Summary
Summary
Virtual machines and virtualized hardware have been around for over half a century. The commoditization of the x86 platform and its rapidly growing hardware capabilities have led to recent exponential growth in the use of virtualization both in the enterprise and high performance computing (HPC). The startup time of a...
Recommender systems for the Department of Defense and intelligence community
Summary
Summary
Recommender systems, which selectively filter information for users, can hasten analysts' responses to complex events such as cyber attacks. Lincoln Laboratory's research on recommender systems may bring the capabilities of these systems to analysts in both the Department of Defense and intelligence community.
Recommender systems for the Department of Defense and intelligence community
Summary
Summary
Recommender systems, which selectively filter information for users, can hasten analysts' responses to complex events such as cyber attacks. Lincoln Laboratory's research on recommender systems may bring the capabilities of these systems to analysts in both the Department of Defense and intelligence community.
Sampling operations on big data
Summary
Summary
The 3Vs -- Volume, Velocity and Variety -- of Big Data continues to be a large challenge for systems and algorithms designed to store, process and disseminate information for discovery and exploration under real-time constraints. Common signal processing operations such as sampling and filtering, which have been used for decades...
Percolation model of insider threats to assess the optimum number of rules
Summary
Summary
Rules, regulations, and policies are the basis of civilized society and are used to coordinate the activities of individuals who have a variety of goals and purposes. History has taught that over-regulation (too many rules) makes it difficult to compete and under-regulation (too few rules) can lead to crisis. This...
Sampling large graphs for anticipatory analytics
Summary
Summary
The characteristics of Big Data - often dubbed the 3V's for volume, velocity, and variety - will continue to outpace the ability of computational systems to process, store, and transmit meaningful results. Traditional techniques for dealing with large datasets often include the purchase of larger systems, greater human-in-the-loop involvement, or...
Parallel vectorized algebraic AES in MATLAB for rapid prototyping of encrypted sensor processing algorithms and database analytics
Summary
Summary
The increasing use of networked sensor systems and networked databases has led to an increased interest in incorporating encryption directly into sensor algorithms and database analytics. MATLAB is the dominant tool for rapid prototyping of sensor algorithms and has extensive database analytics capabilities. The advent of high level and high...
Portable Map-Reduce utility for MIT SuperCloud environment
Summary
Summary
The MIT Map-Reduce utility has been developed and deployed on the MIT SuperCloud to support scientists and engineers at MIT Lincoln Laboratory. With the MIT Map-Reduce utility, users can deploy their applications quickly onto the MIT SuperCloud infrastructure. The MIT Map-Reduce utility can work with any applications without the need...