Publications

Refine Results

(Filters Applied) Clear All

High resolution microburst outflow vertical profile data from Huntsville, Alabama, and Denver, Colorado

Author:
Published in:
MIT Lincoln Laboratory Report ATC-163

Summary

The purpose of this report is to present detailed data on microburst outflows recorded by the TDWR testbed radar (FL-2) in Huntsville, Alabama (1986) and Denver, Colorado (1987-88). Whenever possible, a microburst detected within 10 km of the radar was scanned in a vertical direction (RHI) at 1 to 2 degree azimuthal intervals about the center of divergence. The vertical profile of the outflow is pertinent to the detection capability and siting strategy of a single Doppler radar observing the microburst from a horizontal viewing angle. Additionally, outflow features are important in assessing the hazard associated with microbursts as well as the capability of other wind shear detection (LLWAS or ASR). Of particular interest is the variability of outflows depths from case to case and site to site. If the depth across the maximum velocity differential is shallow, an outflow might go undetected or underestimated by a radar, the beam ot which was not viewing the axis of peak divergence. Previous research projects in Denver reported the highest winds in a microburst typically occur near the surface with an average outflow depth (1/2 peak velocity) ranging between 500 and 600 meters: however, the vertical resolution of these data was fairly crude due to the scan strategies utilized. This report provides detailed high resolution microburst outflow vertical profile data pertinent to TDWR system studies based on RHI and closely spaced PPI scans. The median observed outflow depth in Huntsville was 200 meters shallower than in Denver while the median height of the maximum velocity varied from 100 meters AGL in Huntsville to 200 meters AGL in Denver. For those Denver events presented here, we recommend that the TDWR microburst detection scan extend to at least 200 meters AGL and 100 meters if there is adequate clutter suppression.
READ LESS

Summary

The purpose of this report is to present detailed data on microburst outflows recorded by the TDWR testbed radar (FL-2) in Huntsville, Alabama (1986) and Denver, Colorado (1987-88). Whenever possible, a microburst detected within 10 km of the radar was scanned in a vertical direction (RHI) at 1 to 2...

READ MORE

Characteristics of thunderstorm-generated low altitude wind shear: a survey based on nationwide Terminal Doppler Weather Radar testbed measurements

Summary

The characteristics of microbursts and gust fronts, two forms of aviation-hazardous low altitude wind shear, are presented. Data were collected with a prototype terminal Doppler weather radar and a network of surface weather stations in Memphis, Huntsville, Denver, Kansas City, and Orlando. Regional differences and features that could be exploited in detection systems such as the associated reflectivity, surface wind shear, and temperature change are emphasized.
READ LESS

Summary

The characteristics of microbursts and gust fronts, two forms of aviation-hazardous low altitude wind shear, are presented. Data were collected with a prototype terminal Doppler weather radar and a network of surface weather stations in Memphis, Huntsville, Denver, Kansas City, and Orlando. Regional differences and features that could be exploited...

READ MORE

A prototype microburst prediction product for the terminal doppler weather radar

Published in:
16th Conf. on Severe Local Storms/Conf. on Atmospheric Electricity, 22-26 October 1990, pp. 393-396.

Summary

This paper describes a prototype microburst prediction product for the Terminal Doppler Weather Radar (TDWR). The prediction product was evaluated for microbursts observed during the spring and summer of 1989 at Kansas City. Results are presented demonstrating reliable prediction of high reflectivity microbursts of at least 15 m/s outflow intensity from single-Doppler radar data. The ability of the algorithm to predict microbursts approximately five minutes prior to the onset of surface outflow could be used to improve air traffic control (ATC) planning and to improve hazard warning time to pilots. In particular, this product could allow aircraft to avoid an impending microburst hazard, rather than penetrating it. The present TDWR microburst recognition algorithm uses features aloft such as reflectivity cores and convergence to recognize microburst precursors. The algorithm uses precursors to make a microburst declaration while the surface outflow is still weak, thereby improving the hazard warning time (Campbell, 1989). The microburst prediction product is an extension of the algorithm to predict microbursts from these precursor signatures. The prototype prediction product is tuned to predict the high reflectivity microburst typical of humid regions of the United States. The paper begins by reviewing conceptual models for microburst development and comparing them to the observed characteristics of Kansas City microbursts. The prototype prediction product is then described, and performance statistics are presented. Finally, failure mechanisms and future work are discussed.
READ LESS

Summary

This paper describes a prototype microburst prediction product for the Terminal Doppler Weather Radar (TDWR). The prediction product was evaluated for microbursts observed during the spring and summer of 1989 at Kansas City. Results are presented demonstrating reliable prediction of high reflectivity microbursts of at least 15 m/s outflow intensity...

READ MORE

A case study of the Claycomo, Missouri microburst on July 30, 1989

Published in:
16th Conf. on Severe Local Storms/Conf. on Atmospheric Electricity, 22-26 October 1990, pp. 388-392.

Summary

The Terminal Doppler Weather Radar (TDWR) testbed collected thunderstorm measurements in the Kansas City area from March 27 through October 6, 1989. Of the 393 microbursts detected by the radar, 21 were classified as severe, with a differential velocity > 24 m/s. None of the severe events impacted terminal operations at Kansas City International Airport (KCI). Nevertheless, there were 42 microbursts within 3 nautical miles of the airport.
READ LESS

Summary

The Terminal Doppler Weather Radar (TDWR) testbed collected thunderstorm measurements in the Kansas City area from March 27 through October 6, 1989. Of the 393 microbursts detected by the radar, 21 were classified as severe, with a differential velocity > 24 m/s. None of the severe events impacted terminal operations...

READ MORE

A case study of the 24 August 1986, FLOWS microburst

Published in:
MIT Lincoln Laboratory Report ATC-162

Summary

From 1984 to 1986, Lincoln Laboratory under the sponsorship of the Federal Aviation Administration (FAA) collected wind shear measurements in the southeastern United States using a pulsed Doppler radar. The major emphasis of the measurement program and subsequent analyses is the development and testing of algorithms that will enable the Terminal Doppler Weather Radar (TDWR) to provide wind shear warnings to the aviation community by detection and tracking gust fronts and microbursts. An important phase of the program involves determining appropriate scan strategies and algorithms to detect other radar measurable features which precede or accompany the surface outflows of microbursts. The detection of features aloft such as convergence, rotation, divergence, storm cells, and descending reflectivity cores may permit advanced recognition of the wind shear while it is less than 10 m/s. In this report a microburst on 24 August 1986 in Huntsville is analyzed with single and dual-Doppler techniques to assess microburst precursors, asymmetry, and forcing mechanisms which could be used for futute algorithm development. The microburst producing storm formed within a moist adiabatic, unstable air-mass with weak wind shear at low to mid-levels of the atmosphere. Rotation, convergence, divergent tops, and a descending core were detected prior to the outflow attaining a divergence of 10 m/s. This storm is similar to other Huntsville microburst producing cells in exhibiting upper-level divergence prior to the initial microburst outflow. Previous analyses of wind shear in Denver and Oklahoma did not discuss divergent tops as a possible microburst precursor. However, its relation to storm severity and hailstorm intensity has been reported by Witt and Nelson (1984) and NEXRAD Program Office (1985). In this case-study, the 3-dimensional microburst detection algorithm provided an early declaration of the event while the radial velocity differential was less than 10 m/s.
READ LESS

Summary

From 1984 to 1986, Lincoln Laboratory under the sponsorship of the Federal Aviation Administration (FAA) collected wind shear measurements in the southeastern United States using a pulsed Doppler radar. The major emphasis of the measurement program and subsequent analyses is the development and testing of algorithms that will enable the...

READ MORE

An analysis of microburst characteristics related to automatic detection from Huntsville, Alabama and Denver, Colorado

Author:
Published in:
24th Conf. on Radar Meteorology, 27-31 March 1989, pp. 269-273.

Summary

During 1986 and 1987-8, Lincoln Laboratory, under the sponsorship of the Federal Aviation Administration (FAA), collected Doppler radar measurements in Huntsville, Alabama and Denver, Colorado, respectively. These field programs focused on developing and evaluating an automated wind shear detection system that would provide timely warnings of hazardous low-altitude wind shear events to pilots in the airport terminal area. Two previous projects in Denver (JAWS and CLAWS) documented the ability of a pulsed Doppler radar system to detect wind shear near an airport. In the last two decades, there have been 27 aircraft accidents or incidents at least partially attributed to this phenomenon. According to the National Transportation Safety Board, the most hazardous form of wind shear to aviation is the microburst, first identified by Fujita (1981). A microburst is an outflow of downdraft winds from a convective cloud which exhibits a strong divergent pattern near the surface. The radial velocity differential (delta V) must be greater than or equal to 10 m/s over a distance of 4 km or less to be classified as a microburst. In this paper, microburst measurements from the TDWR testbed are analyzed to characterize and compare the type of outflows in an environment with a typically dry sub-cloud layer (Denver) and a typically moist sub-cloud layer (Huntsville), and to relate these characteristics wo observable radar features being used in the Terminal Doppler Weather Radar (TDWR) system for microburst detection. Section 2 describes the primary radar used in the data collection program. Section 3 contrasts microburst characteristics from the two locales. Evidence is presented which suggests that the reflectivity and intensity of the outflow are important to the performance of the microburst detection algorithm, while the frequency and intensity of features aloft may provide for an earlier declaration of a microburst. In section 4, key microburst characteristics from Huntsville and Denver are summarized in relation to the automatic detection process.
READ LESS

Summary

During 1986 and 1987-8, Lincoln Laboratory, under the sponsorship of the Federal Aviation Administration (FAA), collected Doppler radar measurements in Huntsville, Alabama and Denver, Colorado, respectively. These field programs focused on developing and evaluating an automated wind shear detection system that would provide timely warnings of hazardous low-altitude wind shear...

READ MORE

Using features aloft to improve timeliness of TDWR hazard warnings

Published in:
Third Int. Conf. on the Aviation Weather System, 30 January - 3 February 1989, pp. 184-189.

Summary

The Terminal Doppler Weather Radar (TDWR) has an operational requirement to provide a one minute advance warning for aircraft encountering a hazardous wind shear. This paper describes the use of features aloft in the prototype TDWR microburst recognition algorithm to improve the timeliness of microburst hazard warnings. The use of features aloft allows the algorithm to make a microburst declaration while the surface outflow is still weak, thereby increasing the hazard warning time. In addition, current work indicates that these signatures can also be used to predict the onset of surface outflow for high-reflectivity events. An initial version of the microburst recognition algorithm using surface velocity data only was described by Merritt (1987). Initial work on the use of features aloft to increase the reliability and timeliness of microburst alarms was described in Campbell, 1988. This work was motivated by the desire to emulate the ability of human experts to use features aloft to enhance the timeliness of microburst warnings (McCarthy & Wilson, 1986). This research was further influences by the conceptual models for the evolution of low, medium and high reflectivity microburst events in the Denver area proposed by Roberts and Wilson (1986), and by studies of features aloft associated with microbursts in the Southeast (Isaminger, 1987). The current TDWR microburst recognition algorithm is described in Campbell and Merritt, 1988. The present paper presents results demonstrating the ability of the prototype algorithm to recognize features aloft for microburst events observed at Huntsville, AL and Denver, CO. It is shown that the ability to recognize features aloft improved the hazard warning time for these events. Initial results for microburst prediction are also presented.
READ LESS

Summary

The Terminal Doppler Weather Radar (TDWR) has an operational requirement to provide a one minute advance warning for aircraft encountering a hazardous wind shear. This paper describes the use of features aloft in the prototype TDWR microburst recognition algorithm to improve the timeliness of microburst hazard warnings. The use of...

READ MORE

A preliminary study of precursors to Huntsville microbursts

Published in:
MIT Lincoln Laboratory Report ATC-153

Summary

Lincoln Laboratory under the sponsorship of the FAA is currently developing automated algorithms for the detection of wind shears such as microbursts and gust fronts. Previous studies have shown that these outflows can be hazardous to an airplance during takeoffs and landings. The ultimate goal of a microburst detection algorithm is the timely warning of potentially hazardous wind shears through the detection of reliable precursors. Research in Colorado and Oklahoma documented the significance of precursors such as descending reflectivity cores, convergence, rotation, and reflectivity notching as indicators that a microburst will occur in the very near future. The overall importance of an individual feature varies between regions. This investiagtion will focus on those precursors which play a dominant role in the formation of wet microbursts in the southern United States. The data analyzed in this report was gathered by the FAA TDWR S-band Doppler radar during 1985 and 1986 in Memphis, Tennessee, and Hunstville, Alabama.
READ LESS

Summary

Lincoln Laboratory under the sponsorship of the FAA is currently developing automated algorithms for the detection of wind shears such as microbursts and gust fronts. Previous studies have shown that these outflows can be hazardous to an airplance during takeoffs and landings. The ultimate goal of a microburst detection algorithm...

READ MORE