Publications
Accuracy of motion-compensated NEXRAD precipitation
Summary
Summary
A number of Federal Aviation Administration (FAA) aviation weather systems utilize Next Generation Weather Radar (NEXRAD) precipitation products including the Integrated Terminal Weather System (ITWS), Corridor Integrated Weather System (CIWS), Medium Intensity Airport Weather System (MIAWS), and the Weather and Radar Processor (WARP). The precipitation products from a NEXRAD [e.g...
Overview of the Earth Observing One (EO-1) mission
Summary
Summary
The Earth Observing One (EO-1) satellite, a part of National Aeronautics and Space Administration's New Millennium Program, was developed to demonstrate new technologies and strategies for improved earth observations. It was launched from Vandenburg Air Force Base on November 21, 2000. The EO-1 satellite contains three observing instruments supported by...
Medium intensity airport weather system NEXRAD selection recommendations
Summary
Summary
Under Federal Aviation Administration (FAA) sponsorship, Lincoln Laboratory has developed a Medium Intensity Airport Weather System (MIAWS). MIAWS provides air traffic controllers at medium- intensity airports a real time color display of weather impacting the terminal airspace. The weather data comes from nearby Doppler weather surveillance radars, called Next Generation...
Combining cross-stream and time dimensions in phonetic speaker recognition
Summary
Summary
Recent studies show that phonetic sequences from multiple languages can provide effective features for speaker recognition. So far, only pronunciation dynamics in the time dimension, i.e., n-gram modeling on each of the phone sequences, have been examined. In the JHU 2002 Summer Workshop, we explored modeling the statistical pronunciation dynamics...
Channel robust speaker verification via feature mapping
Summary
Summary
In speaker recognition applications, channel variability is a major cause of errors. Techniques in the feature, model and score domains have been applied to mitigate channel effects. In this paper we present a new feature mapping technique that maps feature vectors into a channel independent space. The feature mapping learns...
Conditional pronunciation modeling in speaker detection
Summary
Summary
In this paper, we present a conditional pronunciation modeling method for the speaker detection task that does not rely on acoustic vectors. Aiming at exploiting higher-level information carried by the speech signal, it uses time-aligned streams of phones and phonemes to model a speaker's specific Pronunciation. Our system uses phonemes...
Phonetic speaker recognition using maximum-likelihood binary-decision tree models
Summary
Summary
Recent work in phonetic speaker recognition has shown that modeling phone sequences using n-grams is a viable and effective approach to speaker recognition, primarily aiming at capturing speaker-dependent pronunciation and also word usage. This paper describes a method involving binary-tree-structured statistical models for extending the phonetic context beyond that of...
The SuperSID project : exploiting high-level information for high-accuracy speaker recognition
Summary
Summary
The area of automatic speaker recognition has been dominated by systems using only short-term, low-level acoustic information, such as cepstral features. While these systems have indeed produced very low error rates, they ignore other levels of information beyond low-level acoustics that convey speaker information. Recently published work has shown examples...
Using prosodic and conversational features for high-performance speaker recognition : report from JHU WS'02
Summary
Summary
While there has been a long tradition of research seeking to use prosodic features, especially pitch, in speaker recognition systems, results have generally been disappointing when such features are used in isolation and only modest improvements have been set when used in conjunction with traditional cepstral GMM systems. In contrast...
Evaluation of TDWR range-velocity ambiguity mitigation techniques
Summary
Summary
Range and velocity ambiguities pose significant data quality challenges for the Terminal Doppler Weather Radar (TDWR). For typical pulse repetition frequencies (PRFs) of 1-2 kHz, the radar is subject to both range-ambiguous precipitation returns and velocity aliasing. Experience shows that these are a major contributor to failures of the system's...