Publications

Refine Results

(Filters Applied) Clear All

Operation and optimization of silicon-diode-based optical modulators

Published in:
IEEE J. Sel. Top. in Quantum Electron., Vol. 16, No. 1, January/February 2010, pp. 165-172.

Summary

An optical modulator in silicon based on a diode structure has been operated in both forward and reverse bias. This modulator achieves near state-of-the-art performance in both modes, thereby making this device idea for comparing the two modes of operation. In reverse bias, the device has a V[pi]L of 4.9 V-cm and a bandwidth of 26GHz. In forward bias, the device is very sensitive, a V[pi]L a slow as 0.0025 V-cm has been achieved, but the bandwidth is only 100 MHz. A ndw geometyr for a reverse-bias device is proposed, and it is predicted to achieve a V[pi]L of 0.5V.cm.
READ LESS

Summary

An optical modulator in silicon based on a diode structure has been operated in both forward and reverse bias. This modulator achieves near state-of-the-art performance in both modes, thereby making this device idea for comparing the two modes of operation. In reverse bias, the device has a V[pi]L of 4.9...

READ MORE

High-fidelity quantum operations on superconducting qubits in the presence of noise

Published in:
Phys. Rev. Lett., Vol. 101, No. 7, 15 August 2008, 070501.

Summary

We present a scheme for implementing quantum operations with superconducting qubits. Our approach "coupler" qubit to mediate a controllable interaction between data qubits, pulse sequences which strongly mitigate the effects of 1/f flux noise, and a high-Q resonator-based local memory. We develop a Monte Carlo simulation technique capable of describing arbitrary noise-induced dephasing and decay, and demonstrate in this system a set of universal gate operations with O(10^-5) error probabilities in the presence of experimentally measured levels of 1=f noise. We then add relaxation and quantify the decay times required to maintain this error level.
READ LESS

Summary

We present a scheme for implementing quantum operations with superconducting qubits. Our approach "coupler" qubit to mediate a controllable interaction between data qubits, pulse sequences which strongly mitigate the effects of 1/f flux noise, and a high-Q resonator-based local memory. We develop a Monte Carlo simulation technique capable of describing...

READ MORE

All silicon infrared photodiodes: photo response and effects of processing temperature

Summary

CMOS compatible infrared waveguide Si photodiodes are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. This article compares diodes fabricated using two annealing temperatures, 300 and 475C. 0.25-mm-long diodes annealed to 300C have a response to 1539 nm radiation of 0.1 A W-1 at a reverse bias of 5 V and 1.2 A W-1 at 20 V. 3-mm-long diodes processed to 475C exhibited two states, L1 and L2, with photo responses of 0.3 +/-0.1 A W-1 at 5 V and 0.7 +/-10.2 A W-1 at 20 V for the L1 state and 0.5 +/-0.2 A W-1 at 5 V and 4 to 20 A W-1 at 20 V for the L2 state. The diodes can be switched between L1 and L2. The bandwidths vary from 10 to 20 GHz. These diodes will generate electrical power from the incident radiation with efficiencies from 4 to 10 %.
READ LESS

Summary

CMOS compatible infrared waveguide Si photodiodes are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. This article compares diodes fabricated using two annealing temperatures, 300 and 475C. 0.25-mm-long diodes annealed to 300C have a response to 1539 nm radiation of 0.1 A W-1 at a reverse...

READ MORE

Afterpulsing in Geiger-mode avalanche photodiodes for 1.06um wavelength

Summary

We consider the phenomenon of afterpulsing in avalanche photodiodes (APDs) operating in gated and free-running Geiger mode. An operational model of afterpulsing and other noise characteristics of APDs predicts the noise behavior observed in the free-running mode. We also use gated-mode data to investigate possible sources of afterpulsing in these devices. For 30-um-diam, 1.06-um-wavelength InGaAsP/InP APDs operated at 290 K and 4 V overbias, we obtained a dominant trap lifetime of td=0.32 us, a trap energy of 0.11 eV, and a baseline dark count rate 245 kHz.
READ LESS

Summary

We consider the phenomenon of afterpulsing in avalanche photodiodes (APDs) operating in gated and free-running Geiger mode. An operational model of afterpulsing and other noise characteristics of APDs predicts the noise behavior observed in the free-running mode. We also use gated-mode data to investigate possible sources of afterpulsing in these...

READ MORE