Publications

Refine Results

(Filters Applied) Clear All

Nowcasting requirements for the aircraft vortex spacing system (AVOSS)

Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology, 10-15 Jan. 1999, pp. 340-344.

Summary

Aircraft wake vortices are counter-rotating tubes of air that are generated from aircraft as a consequence of the lift on the aircraft. The safety concern of wake vortices, particularly when lighter aircraft are following heavy planes, has caused the Federal Aviation Administration (FAA) to enact minimum separation requirements during the arrival phase of flight. These separation standards are imposed at the arrival threshold during Instrument Flight Rules (IFR) and are a significant constraint on arrival capacity at the largest U.S. airports. Any movement toward increasing air traffic efficiency, such as concepts toward free-flight, must address increasing runway capacity if they are to be fully effective. Decades of past wake vortex measurements clearly show that current wake vortex separations are overconservative in many weather conditions, and that adapting the separations to the current weather state could safely reduce these separations...This paper describes the known meteorological influences on vortex behavior and gives an overview of AVOSS. Airport climatology is studied to discuss the prevalence of conditions that are conducive to capacity increases with AVOSS technology. Finally, additional constraints on AVOSS nowcasts are discussed.
READ LESS

Summary

Aircraft wake vortices are counter-rotating tubes of air that are generated from aircraft as a consequence of the lift on the aircraft. The safety concern of wake vortices, particularly when lighter aircraft are following heavy planes, has caused the Federal Aviation Administration (FAA) to enact minimum separation requirements during the...

READ MORE

Study of Network Expansion LLWAS (LLWAS-NE) fault identification and system warning optimization through joint use of LLWAS-NE and TDWR data

Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM), 10-15 January 1999.

Summary

Low level wind shear has been identified as an aviation hazard which has caused or contributed to a significant number of aircraft accidents (Soffer, 1990). To protect aircraft from hazardous wind shear, the Federal Aviation Administration (FAA) developed a system called the Low Level Wind Shear Alert System (LLWAS), containing a collection of anemometers as well as data processing logic (Wilson and Gramzow, 1991). The LLWAS has undergone several advancements in both design and algorithmic computation. The latest deployment, known as the Network Expansion Low Level Wind Shear Alert System (LLWAS-NE), consists of additional sensors to the original LLWAS network, providing better coverage of the airfield. In addition, the LLWAS-NE is capable of providing runway-oriented wind shear and microburst alerts with loss and gain values. The alerts from LLWAS-NE will be integrated with those from the Terminal Doppler Weather Radar (TDWR) and the Integrated Terminal Weather System (ITWS) at locations where all systems are available (Cole, 1992; Cole and Todd, 1994). An analysis was undertaken at Orlando (MCO) and Dallas/Ft. Worth (DFW) International Airports to assess the accuracy of wind shear alerts produced by LLWAS-NE and the TDWR/LLWASNE integration algorithm. Identifying improvements that can be made to either system is important, as LLWAS-NE alert information is anticipated to be integrated with ITWS in an ITWS/LLWAS-NE integration algorithm. As currently specified, the ITWS/LLWAS-NE integration algorithm will work the same as the TDWR/LLWAS-NE version. The ITWS/LLWAS-NE algorithm is an area where additional work is necessary to ascertain if the integration parameters should be modified to account for performance differences between the ITWS and TDWR algorithms. We suggest that ongoing assessment of the LLWAS-NE should use both LLWAS-NE data and TDWR base data, when possible. Comparing both data sets also will facilitate optimization of LLWAS-NE parameters used in the computation of the alerts.
READ LESS

Summary

Low level wind shear has been identified as an aviation hazard which has caused or contributed to a significant number of aircraft accidents (Soffer, 1990). To protect aircraft from hazardous wind shear, the Federal Aviation Administration (FAA) developed a system called the Low Level Wind Shear Alert System (LLWAS), containing...

READ MORE

The growth and decay storm tracker

Published in:
Proc. Eighth Conf. on Aviation, Range, and Aerospace Meteorology, 10-15 Jan. 1999, pp. 58-62.

Summary

An elliptical filter/tracker capable of accounting for systematic growth and delay, designated the Growth and Decay Storm Tracker, has been developed and tested. Its performance depends on the size and shape of the filter, the performance of the cross-correlation tracker, the time interval between successive scans, the forecast lead time, and the type of storm being tracked.
READ LESS

Summary

An elliptical filter/tracker capable of accounting for systematic growth and delay, designated the Growth and Decay Storm Tracker, has been developed and tested. Its performance depends on the size and shape of the filter, the performance of the cross-correlation tracker, the time interval between successive scans, the forecast lead time...

READ MORE

The benefits of using NEXRAD vertically integrated liquid water as an aviation weather product

Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM), 10-15 January 1999.

Summary

Over the past five years in which the Integrated Terminal Weather System (ITWS) testbed prototypes have been operational, there have been regular discrepancies noticed between the ASR–9 six–level precipitation product and the NEXRAD six–level maximum composite reflectivity product. (1. The NEXRAD composite product used in this study is the NEXRAD maximum composite reflectivity product which both the FAA and the ITWS use for weather data.). At the three prototypes in Memphis, Orlando and Dallas, staff have recognized that in certain situations the NEXRAD composite reflectivity product, which is the ITWS 100 and 200 nm long–range product, can be as much as three Video Integrator and Processor (VIP) levels higher than the ASR–9 precipitation product. This situation has caused some confusion for users of the ITWS system and concern on the part of system safety monitors. The confusion occurs because the two products do not agree with each other. Rhoda and Pawlak (1998) show that more aircraft will deviate around cells of ASR–9 VIP level 4 or greater than will penetrate them. There is also an aviation rule–of–thumb that pilots and air traffic specialists use which states cells of VIP level 3 or greater should be avoided if possible. This rule is a good guide but cannot be applied to the NEXRAD composite product. While the NEXRAD composite may show a cell with an intensity of level 3 or 4, the cell may contain very little of the higher–intensity precipitation while the bulk of the cell contains only level 2. This problem is magnified in the winter months when bright–band effects contaminate the radar data. Clutter [especially anomalous propagation (AP)] contamination of the composite reflectivity product is also a concern (especially when the AP is adjacent to actual weather returns). Differences between the two products will become more apparent with the fielding of the new ITWS situation display which has the capability of displaying both NEXRAD composite reflectivity and ASR–9 data side by side. In this study, we compare the NEXRAD composite reflectivity product with data from both the ASR–9 weather channel and an ASR–9 mosaic product as well as a Vertically Integrated Liquid water (VIL) product generated from NEXRAD base data.
READ LESS

Summary

Over the past five years in which the Integrated Terminal Weather System (ITWS) testbed prototypes have been operational, there have been regular discrepancies noticed between the ASR–9 six–level precipitation product and the NEXRAD six–level maximum composite reflectivity product. (1. The NEXRAD composite product used in this study is the NEXRAD...

READ MORE

Aircraft Vortex Spacing System (AVOSS) initial 1997 system deployment at Dallas/Ft. Worth (DFW) Airport

Published in:
MIT Lincoln Laboratory Report NASA-L-3

Summary

The potential hazard of aircraft encounters with the wake turbulence of preceding aircraft requires the use of minimum separations on landing that are a significant constraint on airport arrival capacity during instrument flight rules (IF) conditions. The National Aeronautics and Space Administration (NASA) Langley Research Center has been researching the development of the Aircraft Vortex Spacing System (AVOSS) which would dynamically change aircraft arrival separations based on the forecasted weather conditions and vortex behavior. An experimental AVOSS test system has been constructed at DFW airport and includes a large set of meteorological instruments, wake vortex sensors from three organizations, and an aircraft data collection system. All of this data are relayed to a central processing center at DFW for processing by automated meteorological data fusion algorithms and by NASA vortex behavior predictions software. An initial deployment and test of the DFW system was conducted during a three-week period in September/October of 1997. This document describes the overall system, the Lincoln-deployed sensors, including the Continuous-Wave Coherent lidar, and the meteorological data collection and processing system. Algorithms that were used to process the data for scientific use are described, as well as the conditions of the data collection and the data formats, for potential users of this database.
READ LESS

Summary

The potential hazard of aircraft encounters with the wake turbulence of preceding aircraft requires the use of minimum separations on landing that are a significant constraint on airport arrival capacity during instrument flight rules (IF) conditions. The National Aeronautics and Space Administration (NASA) Langley Research Center has been researching the...

READ MORE

Global validation of single-station Schumann resonance lightning location

Published in:
J. Atmos. Sol.-Terr. Phys., Vol. 60, No. 7-9., May-June 1998, pp. 701-712.

Summary

Global measurements of large, optically bright lightning events from the Optical Transient Detector (OTD) satellite are used to validate estimates of lightning location from single-station Schumann resonance (SR) data. Bearing estimates are obtained through conventional magnetic direction-finding techniques, while source range is estimated from the range-dependent impedance spectrum of an individual SR transients. An analysis of 40 such transients suggests that single-station techniques can locate lightning globally with an accuracy of 1-2 Mm. This is confirmed by further validation at close ranges from flashes detected by the National Lightning Detection Network (NLDN). Observations with both OTD and SR systems may be useful for globally locating lightning with necessary, if not sufficient, characteristics to trigger mesospheric sprites.
READ LESS

Summary

Global measurements of large, optically bright lightning events from the Optical Transient Detector (OTD) satellite are used to validate estimates of lightning location from single-station Schumann resonance (SR) data. Bearing estimates are obtained through conventional magnetic direction-finding techniques, while source range is estimated from the range-dependent impedance spectrum of an...

READ MORE

Performance characteristics of an algorithm used to remove anomolous propagation from the NEXRAD data

Published in:
28th Conf. on Radar Meteorology, 7-12 September 1997, pp. 317-319.

Summary

An important limitation of precipitation sensors is contamination from ground clutter targets under conditions of anomalous propagation (AP). This problem can be mitigated significantly by high-pass clutter filters such as used by the Terminal Doppler Weather Radar (TDWR) and Next Generation Weather Radar (NEXRAD) systems....MIT Lincoln Laboratory (MIT/LL) has developed and tested an algorithm that removes AP from the NEXRAD reflectivity data. In this paper, we will first provide a brief description of the algorithm. Next we will present the truthing methodology used to identify AP. Then, we will show the algorithm performance results and failure mechanisms with this initial version. Finally, we consider refinements to improve the algorithm's performance.
READ LESS

Summary

An important limitation of precipitation sensors is contamination from ground clutter targets under conditions of anomalous propagation (AP). This problem can be mitigated significantly by high-pass clutter filters such as used by the Terminal Doppler Weather Radar (TDWR) and Next Generation Weather Radar (NEXRAD) systems....MIT Lincoln Laboratory (MIT/LL) has developed...

READ MORE

The capabilities and limitations of using the ASR-9 as a terminal area precipitation sensor

Published in:
28th Conf. on Radar Meteorology, 7-12 September 1997.

Summary

The Airport Surveillance Radar (ASR-9) weather channel is an invaluable tool to air-traffic and flight management specialists. The precipitation data from this sensor is currently displayed on air-traffic specialists' radar scopes and is incorporated into the Integrated Terminal Weather System (ITWS). The data are used to determine optimum routes for aircraft operating in and near the tenninal airspace. Data from other terminal area precipitation sensors such as the Terminal Doppler Weather Radar (TDWR) and the Next Generation Weather Radar (NEXRAD) are also used for this same purpose. The primary advantage of using the ASR-9 as a precipitation sensor is its high update rate, e.g. thirty seconds versus about five minutes for TDWR and N EX RAD. The ASR-9 is also quite reliable, with limited down time. Finally, range folding is not a significant problem with this radar. However, during ITWS prototype testing over the past three years, we have identified several limitations of using this radar as a precipitation sensor. For one, the maximum reflectivity of cells can be significantly underestimated by the ASR-9 due to partial filling of its fan-shaped elevation beam and cell-to-cell spatial averaging. Also, the occurrence of underestimation seems to increase when the radar operates in circular polarization mode. In addition, we have analyzed cases where significant precipitation-induced attenuation has occurred. Finally, because most ASR-9s are located on the airport, rain cores developing aloft, above the airport, maybe underestimated or missed entirely. This paper focuses on the problems identified through the ITWS prototype testing.
READ LESS

Summary

The Airport Surveillance Radar (ASR-9) weather channel is an invaluable tool to air-traffic and flight management specialists. The precipitation data from this sensor is currently displayed on air-traffic specialists' radar scopes and is incorporated into the Integrated Terminal Weather System (ITWS). The data are used to determine optimum routes for...

READ MORE

The impact of thunderstorm growth and decay on air traffic management in class B airspace

Published in:
7th Conf. on Aviation, Range, and Aerospace Meteorology, ARAM, 2-7 February 1997.

Summary

Air traffic management is a challenging task, especially if the airspace involved is impacted by inclement weather. The high volume of air traffic which inundates the nation's major airports compounds the difficulties with which Air Traffic Control (ATC) specialists have to cope. When you add the unpredictability of thunderstorm growth and decay to the controllers workload, air traffic management becomes even more of a challenge. ATC specialists would benefit from reliable forecasts of thunderstorm growth and decay. To determine how they would use a Growth and Decay product, ATC specialists from the Memphis Air Route Traffic Control Center (ARTCC), Traffic Management Unit (TMU), and TRACON supervisors were interviewed while viewing five movie loops of Memphis weather cases. The movies consisted of the ASR-9 six-level reflectivity data, aircraft beacons, and storm motion vectors.
READ LESS

Summary

Air traffic management is a challenging task, especially if the airspace involved is impacted by inclement weather. The high volume of air traffic which inundates the nation's major airports compounds the difficulties with which Air Traffic Control (ATC) specialists have to cope. When you add the unpredictability of thunderstorm growth...

READ MORE

The Memphis ITWS convective forecasting collaborative demonstration

Summary

Accurate, short-term forecasts of where thunderstorms will develop, move and decay allow for strategic traffic management in and around the aviation terminal and enroute airspace. Pre-planning to avoid adverse weather conditions provides safe, smooth and continuous air traffic flow and savings in both fuel cost and time. Wolfson, et. al ( 1997) describe the problem of convective weather forecasting for FAA applications. In 1995, National Center for Atmospheric Research (NCAR), MIT Lincoln Laboratory (MIT-LL) and National Severe Storms Laboratory (NSSL) scientists and engineers agreed to collaborate on the development of a convective weather forecasting algorithm for use in airport terminal areas. Each laboratory brings special strengths to the project. NCAR has been developing techniques for precise, short-term (0-60 minutes) forecasts of thunderstorm initiation, movement and dissipation for the FAA over the past ten years and has developed the Auto-Nowcaster software. MIT-LL has been developing real-time algorithms for the Integrated Terminal Weather System (ITWS), including techniques for storm tracking, gust front detection, and calculating storm growth and decay (as part of predicting microbursts) . NSSL has been working on the NEXRAD Storm Cell Identification and Tracking (SCIT) algorithm, and on understanding the predictive value of the storm cell information. Thus by using the latest research results and best techniques available at each laboratory, the collaborative effort will hopefully result in a superior convective weather forecasting algorithm. Our goal in the immediate future is to develop a joint algorithm that can be demonstrated to users of terminal weather information, so that the benefits of convective weather forecast information can be realized, and the remaining needs can be assessed. As a first effort in the collaboration, the laboratories fielded their individual algorithms at the Memphis ITWS site. This paper gives an overview of our collaborative experiment in Memphis, the system each laboratory operated, some preliminary analysis of our performance on one case, and our plans for the near future.
READ LESS

Summary

Accurate, short-term forecasts of where thunderstorms will develop, move and decay allow for strategic traffic management in and around the aviation terminal and enroute airspace. Pre-planning to avoid adverse weather conditions provides safe, smooth and continuous air traffic flow and savings in both fuel cost and time. Wolfson, et. al...

READ MORE