Publications

Refine Results

(Filters Applied) Clear All

Rapid sequence identification of potential pathogens using techniques from sparse linear algebra

Summary

The decreasing costs and increasing speed and accuracy of DNA sample collection, preparation, and sequencing has rapidly produced an enormous volume of genetic data. However, fast and accurate analysis of the samples remains a bottleneck. Here we present D4RAGenS, a genetic sequence identification algorithm that exhibits the Big Data handling and computational power of the Dynamic Distributed Dimensional Data Model (D4M). The method leverages linear algebra and statistical properties to increase computational performance while retaining accuracy by subsampling the data. Two run modes, Fast and Wise, yield speed and precision tradeoffs, with applications in biodefense and medical diagnostics. The D4RAGenS analysis algorithm is tested over several datasets, including three utilized for the Defense Threat Reduction Agency (DTRA) metagenomic algorithm contest.
READ LESS

Summary

The decreasing costs and increasing speed and accuracy of DNA sample collection, preparation, and sequencing has rapidly produced an enormous volume of genetic data. However, fast and accurate analysis of the samples remains a bottleneck. Here we present D4RAGenS, a genetic sequence identification algorithm that exhibits the Big Data handling...

READ MORE

Using a big data database to identify pathogens in protein data space [e-print]

Summary

Current metagenomic analysis algorithms require significant computing resources, can report excessive false positives (type I errors), may miss organisms (type II errors/false negatives), or scale poorly on large datasets. This paper explores using big data database technologies to characterize very large metagenomic DNA sequences in protein space, with the ultimate goal of rapid pathogen identification in patient samples. Our approach uses the abilities of a big data databases to hold large sparse associative array representations of genetic data to extract statistical patterns about the data that can be used in a variety of ways to improve identification algorithms.
READ LESS

Summary

Current metagenomic analysis algorithms require significant computing resources, can report excessive false positives (type I errors), may miss organisms (type II errors/false negatives), or scale poorly on large datasets. This paper explores using big data database technologies to characterize very large metagenomic DNA sequences in protein space, with the ultimate...

READ MORE

Genetic sequence matching using D4M big data approaches

Published in:
HPEC 2014: IEEE Conf. on High Performance Extreme Computing, 9-11 September 2014.

Summary

Recent technological advances in Next Generation Sequencing tools have led to increasing speeds of DNA sample collection, preparation, and sequencing. One instrument can produce over 600 Gb of genetic sequence data in a single run. This creates new opportunities to efficiently handle the increasing workload. We propose a new method of fast genetic sequence analysis using the Dynamic Distributed Dimensional Data Model (D4M) - an associative array environment for MATLAB developed at MIT Lincoln Laboratory. Based on mathematical and statistical properties, the method leverages big data techniques and the implementation of an Apache Acculumo database to accelerate computations one-hundred fold over other methods. Comparisons of the D4M method with the current gold-standard for sequence analysis, BLAST, show the two are comparable in the alignments they find. This paper will present an overview of the D4M genetic sequence algorithm and statistical comparisons with BLAST.
READ LESS

Summary

Recent technological advances in Next Generation Sequencing tools have led to increasing speeds of DNA sample collection, preparation, and sequencing. One instrument can produce over 600 Gb of genetic sequence data in a single run. This creates new opportunities to efficiently handle the increasing workload. We propose a new method...

READ MORE

Speech enhancement using sparse convolutive non-negative matrix factorization with basis adaptation

Published in:
INTERSPEECH 2012: 13th Annual Conf. of the Int. Speech Communication Assoc., 9-13 September 2012.

Summary

We introduce a framework for speech enhancement based on convolutive non-negative matrix factorization that leverages available speech data to enhance arbitrary noisy utterances with no a priori knowledge of the speakers or noise types present. Previous approaches have shown the utility of a sparse reconstruction of the speech-only components of an observed noisy utterance. We demonstrate that an underlying speech representation which, in addition to applying sparsity, also adapts to the noisy acoustics improves overall enhancement quality. The proposed system performs comparably to a traditional Wiener filtering approach, and the results suggest that the proposed framework is most useful in moderate- to low-SNR scenarios.
READ LESS

Summary

We introduce a framework for speech enhancement based on convolutive non-negative matrix factorization that leverages available speech data to enhance arbitrary noisy utterances with no a priori knowledge of the speakers or noise types present. Previous approaches have shown the utility of a sparse reconstruction of the speech-only components of...

READ MORE

Vocal-source biomarkers for depression - a link to psychomotor activity

Published in:
INTERSPEECH 2012: 13th Annual Conf. of the Int. Speech Communication Assoc., 9-13 September 2012.

Summary

A hypothesis in characterizing human depression is that change in the brain's basal ganglia results in a decline of motor coordination. Such a neuro-physiological change may therefore affect laryngeal control and dynamics. Under this hypothesis, toward the goal of objective monitoring of depression severity, we investigate vocal-source biomarkers for depression; specifically, source features that may relate to precision in motor control, including vocal-fold shimmer and jitter, degree of aspiration, fundamental frequency dynamics, and frequency-dependence of variability and velocity of energy. We use a 35-subject database collected by Mundt et al. in which subjects were treated over a six-week period, and investigate correlation of our features with clinical (HAMD), as well as self-reported (QIDS) Total subject assessment scores. To explicitly address the motor aspect of depression, we compute correlations with the Psychomotor Retardation component of clinical and self-reported Total assessments. For our longitudinal database, most correlations point to statistical relationships of our vocal-source biomarkers with psychomotor activity, as well as with depression severity.
READ LESS

Summary

A hypothesis in characterizing human depression is that change in the brain's basal ganglia results in a decline of motor coordination. Such a neuro-physiological change may therefore affect laryngeal control and dynamics. Under this hypothesis, toward the goal of objective monitoring of depression severity, we investigate vocal-source biomarkers for depression...

READ MORE

Exploring the impact of advanced front-end processing on NIST speaker recognition microphone tasks

Summary

The NIST speaker recognition evaluation (SRE) featured microphone data in the 2005-2010 evaluations. The preprocessing and use of this data has typically been performed with telephone bandwidth and quantization. Although this approach is viable, it ignores the richer properties of the microphone data-multiple channels, high-rate sampling, linear encoding, ambient noise properties, etc. In this paper, we explore alternate choices of preprocessing and examine their effects on speaker recognition performance. Specifically, we consider the effects of quantization, sampling rate, enhancement, and two-channel speech activity detection. Experiments on the NIST 2010 SRE interview microphone corpus demonstrate that performance can be dramatically improved with a different preprocessing chain.
READ LESS

Summary

The NIST speaker recognition evaluation (SRE) featured microphone data in the 2005-2010 evaluations. The preprocessing and use of this data has typically been performed with telephone bandwidth and quantization. Although this approach is viable, it ignores the richer properties of the microphone data-multiple channels, high-rate sampling, linear encoding, ambient noise...

READ MORE

Automatic detection of depression in speech using Gaussian mixture modeling with factor analysis

Summary

Of increasing importance in the civilian and military population is the recognition of Major Depressive Disorder at its earliest stages and intervention before the onset of severe symptoms. Toward the goal of more effective monitoring of depression severity, we investigate automatic classifiers of depression state, that have the important property of mitigating nuisances due to data variability, such as speaker and channel effects, unrelated to levels of depression. To assess our measures, we use a 35-speaker free-response speech database of subjects treated for depression over a six-week duration, along with standard clinical HAMD depression ratings. Preliminary experiments indicate that by mitigating nuisances, thus focusing on depression severity as a class, we can significantly improve classification accuracy over baseline Gaussian-mixture-model-based classifiers.
READ LESS

Summary

Of increasing importance in the civilian and military population is the recognition of Major Depressive Disorder at its earliest stages and intervention before the onset of severe symptoms. Toward the goal of more effective monitoring of depression severity, we investigate automatic classifiers of depression state, that have the important property...

READ MORE

Sinewave representations of nonmodality

Summary

Regions of nonmodal phonation, exhibiting deviations from uniform glottal-pulse periods and amplitudes, occur often and convey information about speaker- and linguistic-dependent factors. Such waveforms pose challenges for speech modeling, analysis/synthesis, and processing. In this paper, we investigate the representation of nonmodal pulse trains as a sum of harmonically-related sinewaves with time-varying amplitudes, phases, and frequencies. We show that a sinewave representation of any impulsive signal is not unique and also the converse, i.e., frame-based measurements of the underlying sinewave representation can yield different impulse trains. Finally, we argue how this ambiguity may explain addition, deletion, and movement of pulses in sinewave synthesis and a specific illustrative example of time-scale modification of a nonmodal case of diplophonia.
READ LESS

Summary

Regions of nonmodal phonation, exhibiting deviations from uniform glottal-pulse periods and amplitudes, occur often and convey information about speaker- and linguistic-dependent factors. Such waveforms pose challenges for speech modeling, analysis/synthesis, and processing. In this paper, we investigate the representation of nonmodal pulse trains as a sum of harmonically-related sinewaves with...

READ MORE

Phonologically-based biomarkers for major depressive disorder

Summary

Of increasing importance in the civilian and military population is the recognition of major depressive disorder at its earliest stages and intervention before the onset of severe symptoms. Toward the goal of more effective monitoring of depression severity, we introduce vocal biomarkers that are derived automatically from phonologically-based measures of speech rate. To assess our measures, we use a 35-speaker free-response speech database of subjects treated for depression over a 6-week duration. We find that dissecting average measures of speech rate into phone-specific characteristics and, in particular, combined phone-duration measures uncovers stronger relationships between speech rate and depression severity than global measures previously reported for a speech-rate biomarker. Results of this study are supported by correlation of our measures with depression severity and classification of depression state with these vocal measures. Our approach provides a general framework for analyzing individual symptom categories through phonological units, and supports the premise that speaking rate can be an indicator of psychomotor retardation severity.
READ LESS

Summary

Of increasing importance in the civilian and military population is the recognition of major depressive disorder at its earliest stages and intervention before the onset of severe symptoms. Toward the goal of more effective monitoring of depression severity, we introduce vocal biomarkers that are derived automatically from phonologically-based measures of...

READ MORE

Use of a high-resolution deterministic weather forecast for strategic air traffic management decision support

Published in:
91st American Meteorological Society Annual Meeting, 22-27 January 2011.

Summary

One of the most significant air traffic challenges is managing the National Airspace System (NAS) in a manner that optimizes efficiency and mitigates avoidable delay, while maintaining safety, when convective weather is present. To do this, aviation planners seek to develop strategic air traffic management (ATM) plans and initiatives that anticipate weather constraints 2-8 hours in the future and identify options and alternatives for efficient operations during the off-nominal NAS conditions. In support of strategic planning, traffic managers currently conduct bi-hourly Strategic Planning Telcons (SPTs) and devise weather impact mitigations plans using the human-generated Collaborative Convective Forecast Product (CCFP). However, most operational decision-makers agree that the quasi-deterministic CCFP "polygons" (accompanied by a "low/high" forecast confidence rating) lack the granularity and temporal resolution to adequately support efficient strategic ATM plans and decisions. Moreover, traffic managers also assert that probabilistic forecasts of convective weather likelihood, while helpful in highlighting regions of possible airspace disruptions, generally lack the ability to resolve specific weather characteristics pertinent to strategic planning. MIT Lincoln Laboratory, NCAR Research Applications Laboratory, and NOAA Earth Systems Research Laboratory (ESRL) have collaborated to develop a high-resolution, rapidly updating 0-8 hour deterministic precipitation and echo tops forecast, known as CoSPA, to aid operational decision-makers in developing strategic plans for weather impact mitigation. In the summer of 2010, a comprehensive field study was conducted to assess potential benefits and the operational performance of CoSPA in the context of strategic ATM planning. The data were gathered by simultaneous real-time observations of I5 FAA and airline operations facilities during 15 convective weather impact days affecting the Northern Plains, Great Lakes, and East Coast regions of the NAS. CoSPA field evaluation results will be presented to demonstrate the various ways aviation planners have utilized the increased spatial and temporal resolution of CoSPA - the ability of CoSPA to resolve storm structure and refine forecasts with high update rates - to make more detailed assessments of potential weather impacts and to determine the subsequent need for airspace management initiatives. Results will also be presented that highlight CoSPA enhancement needs, primarily related to forecast uncertainty, that would improve the operational effectiveness of CoSPA-derived weather impact mitigation plans. Finally, opportunities to translate CoSPA deterministic forecasts into integrated weather-ATM decision support for specific strategic planning tasks will be discussed
READ LESS

Summary

One of the most significant air traffic challenges is managing the National Airspace System (NAS) in a manner that optimizes efficiency and mitigates avoidable delay, while maintaining safety, when convective weather is present. To do this, aviation planners seek to develop strategic air traffic management (ATM) plans and initiatives that...

READ MORE