Publications

Refine Results

(Filters Applied) Clear All

High-level speaker verification with support vector machines

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Vol. 1, ICASSP, 17-21 May 2004, pp. I-73 - I-76.

Summary

Recently, high-level features such as word idiolect, pronunciation, phone usage, prosody, etc., have been successfully used in speaker verification. The benefit of these features was demonstrated in the NIST extended data task for speaker verification; with enough conversational data, a recognition system can become familiar with a speaker and achieve excellent accuracy. Typically, high-level-feature recognition systems produce a sequence of symbols from the acoustic signal and then perform recognition using the frequency and co-occurrence of symbols. We propose the use of support vector machines for performing the speaker verification task from these symbol frequencies. Support vector machines have been applied to text classification problems with much success. A potential difficulty in applying these methods is that standard text classification methods tend to smooth frequencies which could potentially degrade speaker verification. We derive a new kernel based upon standard log likelihood ratio scoring to address limitations of text classification methods. We show that our methods achieve significant gains over standard methods for processing high-level features.
READ LESS

Summary

Recently, high-level features such as word idiolect, pronunciation, phone usage, prosody, etc., have been successfully used in speaker verification. The benefit of these features was demonstrated in the NIST extended data task for speaker verification; with enough conversational data, a recognition system can become familiar with a speaker and achieve...

READ MORE

A tutorial on text-independent speaker verification

Summary

This paper presents an overview of a state-of-the-art text-independent speaker verification system. First, an introduction proposes a modular scheme of the training and test phases of a speaker verification system. Then, the most commonly speech parameterization used in speaker verification, namely, cepstral analysis, is detailed. Gaussian mixture modeling, which is the speaker modeling technique used in most systems, is then explained. A few speaker modeling alternatives, namely, neural networks and support vector machines, are mentioned. Normalization of scores is then explained, as this is a very important step to deal with real-world data. The evaluation of a speaker verification system is then detailed, and the detection error trade-off (DET) curve is explained. Several extensions of speaker verification are then enumerated, including speaker tracking and segmentation by speakers. Then, some applications of speaker verification are proposed, including on-site applications, remote applications, applications relative to structuring audio information, and games. Issues concerning the forensic area are then recalled, as we believe it is very important to inform people about the actual performance and limitations of speaker verification systems. This paper concludes by giving a few research trends in speaker verification for the next couple of years.
READ LESS

Summary

This paper presents an overview of a state-of-the-art text-independent speaker verification system. First, an introduction proposes a modular scheme of the training and test phases of a speaker verification system. Then, the most commonly speech parameterization used in speaker verification, namely, cepstral analysis, is detailed. Gaussian mixture modeling, which is...

READ MORE

Analysis of multitarget detection for speaker and language recognition

Published in:
ODYSSEY 2004, 31 May-4 June 2004.

Summary

The general multitarget detection (or open-set identification) task is the intersection of the more common tasks of close-set identification and open-set verification/detection. In this task, a bank of parallel detectors process an input and must decide if the input is from one of the target classes and, if so, which one (or a small set containing the true one). In this paper, we analyze theoretically and empirically the behavior of a multitarget detector and relate the identification confusion error and the miss and false alarm detection errors in predicting performance. We show analytically that the performance of a multitarget detector can be predicted from single detector performance using speaker and language recognition data and experiments.
READ LESS

Summary

The general multitarget detection (or open-set identification) task is the intersection of the more common tasks of close-set identification and open-set verification/detection. In this task, a bank of parallel detectors process an input and must decide if the input is from one of the target classes and, if so, which...

READ MORE

Exploiting nonacoustic sensors for speech enhancement

Summary

Nonacoustic sensors such as the general electromagnetic motion sensor (GEMS), the physiological microphone (P-mic), and the electroglottograph (EGG) offer multimodal approaches to speech processing and speaker and speech recognition. These sensors provide measurements of functions of the glottal excitation and, more generally, of the vocal tract articulator movements that are relatively immune to acoustic disturbances and can supplement the acoustic speech waveform. This paper describes an approach to speech enhancement that exploits these nonacoustic sensors according to their capability in representing specific speech characteristics in different frequency bands. Frequency-domain sensor phase, as well as magnitude, is found to contribute to signal enhancement. Preliminary testing involves the time-synchronous multi-sensor DARPA Advanced Speech Encoding Pilot Speech Corpus collected in a variety of harsh acoustic noise environments. The enhancement approach is illustrated with examples that indicate its applicability as a pre-processor to low-rate vocoding and speaker authentication, and for enhanced listening from degraded speech.
READ LESS

Summary

Nonacoustic sensors such as the general electromagnetic motion sensor (GEMS), the physiological microphone (P-mic), and the electroglottograph (EGG) offer multimodal approaches to speech processing and speaker and speech recognition. These sensors provide measurements of functions of the glottal excitation and, more generally, of the vocal tract articulator movements that are...

READ MORE

Beyond cepstra: exploiting high-level information in speaker recognition

Summary

Traditionally speaker recognition techniques have focused on using short-term, low-level acoustic information such as cepstra features extracted over 20-30 ms windows of speech. But speech is a complex behavior conveying more information about the speaker than merely the sounds that are characteristic of his vocal apparatus. This higher-level information includes speaker-specific prosodics, pronunciations, word usage and conversational style. In this paper, we review some of the techniques to extract and apply these sources of high-level information with results from the NIST 2003 Extended Data Task.
READ LESS

Summary

Traditionally speaker recognition techniques have focused on using short-term, low-level acoustic information such as cepstra features extracted over 20-30 ms windows of speech. But speech is a complex behavior conveying more information about the speaker than merely the sounds that are characteristic of his vocal apparatus. This higher-level information includes...

READ MORE

Multimodal speaker authentication using nonacuostic sensors

Published in:
Proc. Workshop on Multimodal User Authentication, 11-12 December 2003, pp. 215-222.

Summary

Many nonacoustic sensors are now available to augment user authentication. Devices such as the GEMS (glottal electromagnetic micro-power sensor), the EGG (electroglottograph), and the P-mic (physiological mic) all have distinct methods of measuring physical processes associated with speech production. A potential exciting aspect of the application of these sensors is that they are less influenced by acoustic noise than a microphone. A drawback of having many sensors available is the need to develop features and classification technologies appropriate to each sensor. We therefore learn feature extraction based on data. State of the art classification with Gaussian Mixture Models and Support Vector Machines is then applied for multimodal authentication. We apply our techniques to two databases--the Lawrence Livermore GEMS corpus and the DARPA Advanced Speech Encoding Pilot corpus. We show the potential of nonacoustic sensors to increase authentication accuracy in realistic situations.
READ LESS

Summary

Many nonacoustic sensors are now available to augment user authentication. Devices such as the GEMS (glottal electromagnetic micro-power sensor), the EGG (electroglottograph), and the P-mic (physiological mic) all have distinct methods of measuring physical processes associated with speech production. A potential exciting aspect of the application of these sensors is...

READ MORE

Biometrically enhanced software-defined radios

Summary

Software-defined radios and cognitive radios offer tremendous promise, while having great need for user authentication. Authenticating users is essential to ensuring authorized access and actions in private and secure communications networks. User authentication for software-defined radios and cognitive radios is our focus here. We present various means of authenticating users to their radios and networks, authentication architectures, and the complementary combination of authenticators and architectures. Although devices can be strongly authenticated (e.g., cryptographically), reliably authenticating users is a challenge. To meet this challenge, we capitalize on new forms of user authentication combined with new authentication architectures to support features such as continuous user authentication and varying levels of trust-based authentication. We generalize biometrics to include recognizing user behaviors and use them in concert with knowledge- and token-based authenticators. An integrated approach to user authentication and user authentication architectures is presented here to enhance trusted radio communications networks.
READ LESS

Summary

Software-defined radios and cognitive radios offer tremendous promise, while having great need for user authentication. Authenticating users is essential to ensuring authorized access and actions in private and secure communications networks. User authentication for software-defined radios and cognitive radios is our focus here. We present various means of authenticating users...

READ MORE

Auditory signal processing as a basis for speaker recognition

Published in:
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 19-22 October, 2003, pp. 111-114.

Summary

In this paper, we exploit models of auditory signal processing at different levels along the auditory pathway for use in speaker recognition. A low-level nonlinear model, at the cochlea, provides accentuated signal dynamics, while a a high-level model, at the inferior colliculus, provides frequency analysis of modulation components that reveals additional temporal structure. A variety of features are derived from the low-level dynamic and high-level modulation signals. Fusion of likelihood scores from feature sets at different auditory levels with scores from standard mel-cepstral features provides an encouraging speaker recognition performance gain over use of the mel-cepstrum alone with corpora from land-line and cellular telephone communications.
READ LESS

Summary

In this paper, we exploit models of auditory signal processing at different levels along the auditory pathway for use in speaker recognition. A low-level nonlinear model, at the cochlea, provides accentuated signal dynamics, while a a high-level model, at the inferior colliculus, provides frequency analysis of modulation components that reveals...

READ MORE

Integration of speaker recognition into conversational spoken dialogue systems

Summary

In this paper we examine the integration of speaker identification/verification technology into two dialogue systems developed at MIT: the Mercury air travel reservation system and the Orion task delegation system. These systems both utilize information collected from registered users that is useful in personalizing the system to specific users and that must be securely protected from imposters. Two speaker recognition systems, the MIT Lincoln Laboratory text independent GMM based system and the MIT Laboratory for Computer Science text-constrained speaker-adaptive ASR-based system, are evaluated and compared within the context of these conversational systems.
READ LESS

Summary

In this paper we examine the integration of speaker identification/verification technology into two dialogue systems developed at MIT: the Mercury air travel reservation system and the Orion task delegation system. These systems both utilize information collected from registered users that is useful in personalizing the system to specific users and...

READ MORE

Model compression for GMM based speaker recognition systems

Published in:
EUROSPEECH 2003, 1-4 September 2003.

Summary

For large-scale deployments of speaker verification systems models size can be an important issue for not only minimizing storage requirements but also reducing transfer time of models over networks. Model size is also critical for deployments to small, portable devices. In this paper we present a new model compression technique for Gaussian Mixture Model (GMM) based speaker recognition systems. For GMM systems using adaptation from a background model, the compression technique exploits the fact that speaker models are adapted from a single speaker-independent model and not all parameters need to be stored. We present results on the 2002 NIST speaker recognition evaluation cellular telephone corpus and show that the compression technique provides a good tradeoff of compression ratio to performance loss. We are able to achieve a 56:1 compression (624KB -> 11KB) with only a 3.2% relative increase in EER (9.1% -> 9.4%).
READ LESS

Summary

For large-scale deployments of speaker verification systems models size can be an important issue for not only minimizing storage requirements but also reducing transfer time of models over networks. Model size is also critical for deployments to small, portable devices. In this paper we present a new model compression technique...

READ MORE