Publications
Speaker separation in realistic noise environments with applications to a cognitively-controlled hearing aid
Summary
Summary
Future wearable technology may provide for enhanced communication in noisy environments and for the ability to pick out a single talker of interest in a crowded room simply by the listener shifting their attentional focus. Such a system relies on two components, speaker separation and decoding the listener's attention to...
The Speech Enhancement via Attention Masking Network (SEAMNET): an end-to-end system for joint suppression of noise and reverberation [early access]
Summary
Summary
This paper proposes the Speech Enhancement via Attention Masking Network (SEAMNET), a neural network-based end-to-end single-channel speech enhancement system designed for joint suppression of noise and reverberation. It formalizes an end-to-end network architecture, referred to as b-Net, which accomplishes noise suppression through attention masking in a learned embedding space. A...
Speaker recognition using real vs synthetic parallel data for DNN channel compensation
Summary
Summary
Recent work has shown large performance gains using denoising DNNs for speech processing tasks under challenging acoustic conditions. However, training these DNNs requires large amounts of parallel multichannel speech data which can be impractical or expensive to collect. The effective use of synthetic parallel data as an alternative has been...
An evaluation of audio-visual person recognition on the XM2VTS corpus using the Lausanne protocols
Summary
Summary
A multimodal person recognition architecture has been developed for the purpose of improving overall recognition performance and for addressing channel-specific performance shortfalls. This multimodal architecture includes the fusion of a face recognition system with the MIT/LLGMM/UBM speaker recognition architecture. This architecture exploits the complementary and redundant nature of the face...
Exploiting nonacoustic sensors for speech encoding
Summary
Summary
The intelligibility of speech transmitted through low-rate coders is severely degraded when high levels of acoustic noise are present in the acoustic environment. Recent advances in nonacoustic sensors, including microwave radar, skin vibration, and bone conduction sensors, provide the exciting possibility of both glottal excitation and, more generally, vocal tract...
Multisensor MELPE using parameter substitution
Summary
Summary
The estimation of speech parameters and the intelligibility of speech transmitted through low-rate coders, such as MELP, are severely degraded when there are high levels of acoustic noise in the speaking environment. The application of nonacoustic and nontraditional sensors, which are less sensitive to acoustic noise than the standard microphone...
Automated lip-reading for improved speech intelligibility
Summary
Summary
Various psycho-acoustical experiments have concluded that visual features strongly affect the perception of speech. This contribution is most pronounced in noisy environments where the intelligibility of audio-only speech is quickly degraded. An exploration of the effectiveness for extracted visual features such as lip height and width for improving speech intelligibility...
Exploiting nonacoustic sensors for speech enhancement
Summary
Summary
Nonacoustic sensors such as the general electromagnetic motion sensor (GEMS), the physiological microphone (P-mic), and the electroglottograph (EGG) offer multimodal approaches to speech processing and speaker and speech recognition. These sensors provide measurements of functions of the glottal excitation and, more generally, of the vocal tract articulator movements that are...