Publications

Refine Results

(Filters Applied) Clear All

Speaker separation in realistic noise environments with applications to a cognitively-controlled hearing aid

Summary

Future wearable technology may provide for enhanced communication in noisy environments and for the ability to pick out a single talker of interest in a crowded room simply by the listener shifting their attentional focus. Such a system relies on two components, speaker separation and decoding the listener's attention to acoustic streams in the environment. To address the former, we present a system for joint speaker separation and noise suppression, referred to as the Binaural Enhancement via Attention Masking Network (BEAMNET). The BEAMNET system is an end-to-end neural network architecture based on self-attention. Binaural input waveforms are mapped to a joint embedding space via a learned encoder, and separate multiplicative masking mechanisms are included for noise suppression and speaker separation. Pairs of output binaural waveforms are then synthesized using learned decoders, each capturing a separated speaker while maintaining spatial cues. A key contribution of BEAMNET is that the architecture contains a separation path, an enhancement path, and an autoencoder path. This paper proposes a novel loss function which simultaneously trains these paths, so that disabling the masking mechanisms during inference causes BEAMNET to reconstruct the input speech signals. This allows dynamic control of the level of suppression applied by BEAMNET via a minimum gain level, which is not possible in other state-of-the-art approaches to end-to-end speaker separation. This paper also proposes a perceptually-motivated waveform distance measure. Using objective speech quality metrics, the proposed system is demonstrated to perform well at separating two equal-energy talkers, even in high levels of background noise. Subjective testing shows an improvement in speech intelligibility across a range of noise levels, for signals with artificially added head-related transfer functions and background noise. Finally, when used as part of an auditory attention decoder (AAD) system using existing electroencephalogram (EEG) data, BEAMNET is found to maintain the decoding accuracy achieved with ideal speaker separation, even in severe acoustic conditions. These results suggest that this enhancement system is highly effective at decoding auditory attention in realistic noise environments, and could possibly lead to improved speech perception in a cognitively controlled hearing aid.
READ LESS

Summary

Future wearable technology may provide for enhanced communication in noisy environments and for the ability to pick out a single talker of interest in a crowded room simply by the listener shifting their attentional focus. Such a system relies on two components, speaker separation and decoding the listener's attention to...

READ MORE

The Speech Enhancement via Attention Masking Network (SEAMNET): an end-to-end system for joint suppression of noise and reverberation [early access]

Published in:
IEEE/ACM Trans. on Audio, Speech, and Language Processing, Vol. 29, 2021, pp. 515-26.

Summary

This paper proposes the Speech Enhancement via Attention Masking Network (SEAMNET), a neural network-based end-to-end single-channel speech enhancement system designed for joint suppression of noise and reverberation. It formalizes an end-to-end network architecture, referred to as b-Net, which accomplishes noise suppression through attention masking in a learned embedding space. A key contribution of SEAMNET is that the b-Net architecture contains both an enhancement and an autoencoder path. This paper proposes a novel loss function which simultaneously trains both the enhancement and the autoencoder paths, so that disabling the masking mechanism during inference causes SEAMNET to reconstruct the input speech signal. This allows dynamic control of the level of suppression applied by SEAMNET via a minimum gain level, which is not possible in other state-of-the-art approaches to end-to-end speech enhancement. This paper also proposes a perceptually-motivated waveform distance measure. In addition to the b-Net architecture, this paper proposes a novel method for designing target waveforms for network training, so that joint suppression of additive noise and reverberation can be performed by an end-to-end enhancement system, which has not been previously possible. Experimental results show the SEAMNET system to outperform a variety of state-of-the-art baselines systems, both in terms of objective speech quality measures and subjective listening tests. Finally, this paper draws parallels between SEAMNET and conventional statistical model-based enhancement approaches, offering interpretability of many network components.
READ LESS

Summary

This paper proposes the Speech Enhancement via Attention Masking Network (SEAMNET), a neural network-based end-to-end single-channel speech enhancement system designed for joint suppression of noise and reverberation. It formalizes an end-to-end network architecture, referred to as b-Net, which accomplishes noise suppression through attention masking in a learned embedding space. A...

READ MORE

Speaker recognition using real vs synthetic parallel data for DNN channel compensation

Published in:
INTERSPEECH 2016: 16th Annual Conf. of the Int. Speech Communication Assoc., 8-12 September 2016.

Summary

Recent work has shown large performance gains using denoising DNNs for speech processing tasks under challenging acoustic conditions. However, training these DNNs requires large amounts of parallel multichannel speech data which can be impractical or expensive to collect. The effective use of synthetic parallel data as an alternative has been demonstrated for several speech technologies including automatic speech recognition and speaker recognition (SR). This paper demonstrates that denoising DNNs trained with real Mixer 2 multichannel data perform only slightly better than DNNs trained with synthetic multichannel data for microphone SR on Mixer 6. Large reductions in pooled error rates of 50% EER and 30% min DCF are achieved using DNNs trained on real Mixer 2 data. Nearly the same performance gains are achieved using synthetic data generated with a limited number of room impulse responses (RIRs) and noise sources derived from Mixer 2. Using RIRs from three publicly available sources used in the Kaldi ASpIRE recipe yields somewhat lower pooled gains of 34% EER and 25% min DCF. These results confirm the effective use of synthetic parallel data for DNN channel compensation even when the RIRs used for synthesizing the data are not particularly well matched to the task.
READ LESS

Summary

Recent work has shown large performance gains using denoising DNNs for speech processing tasks under challenging acoustic conditions. However, training these DNNs requires large amounts of parallel multichannel speech data which can be impractical or expensive to collect. The effective use of synthetic parallel data as an alternative has been...

READ MORE

An evaluation of audio-visual person recognition on the XM2VTS corpus using the Lausanne protocols

Published in:
Proc. 32nd IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, April 2007, pp. IV-237 - 240.

Summary

A multimodal person recognition architecture has been developed for the purpose of improving overall recognition performance and for addressing channel-specific performance shortfalls. This multimodal architecture includes the fusion of a face recognition system with the MIT/LLGMM/UBM speaker recognition architecture. This architecture exploits the complementary and redundant nature of the face and speech modalities. The resulting multimodal architecture has been evaluated on theXM2VTS corpus using the Lausanne open set verification protocols, and demonstrates excellent recognition performance. The multimodal architecture also exhibits strong recognition performance gains over the performance of the individual modalities.
READ LESS

Summary

A multimodal person recognition architecture has been developed for the purpose of improving overall recognition performance and for addressing channel-specific performance shortfalls. This multimodal architecture includes the fusion of a face recognition system with the MIT/LLGMM/UBM speaker recognition architecture. This architecture exploits the complementary and redundant nature of the face...

READ MORE

Exploiting nonacoustic sensors for speech encoding

Summary

The intelligibility of speech transmitted through low-rate coders is severely degraded when high levels of acoustic noise are present in the acoustic environment. Recent advances in nonacoustic sensors, including microwave radar, skin vibration, and bone conduction sensors, provide the exciting possibility of both glottal excitation and, more generally, vocal tract measurements that are relatively immune to acoustic disturbances and can supplement the acoustic speech waveform. We are currently investigating methods of combining the output of these sensors for use in low-rate encoding according to their capability in representing specific speech characteristics in different frequency bands. Nonacoustic sensors have the ability to reveal certain speech attributes lost in the noisy acoustic signal; for example, low-energy consonant voice bars, nasality, and glottalized excitation. By fusing nonacoustic low-frequency and pitch content with acoustic-microphone content, we have achieved significant intelligibility performance gains using the DRT across a variety of environments over the government standard 2400-bps MELPe coder. By fusing quantized high-band 4-to-8-kHz speech, requiring only an additional 116 bps, we obtain further DRT performance gains by exploiting the ear's insensitivity to fine spectral detail in this frequency region.
READ LESS

Summary

The intelligibility of speech transmitted through low-rate coders is severely degraded when high levels of acoustic noise are present in the acoustic environment. Recent advances in nonacoustic sensors, including microwave radar, skin vibration, and bone conduction sensors, provide the exciting possibility of both glottal excitation and, more generally, vocal tract...

READ MORE

Multisensor MELPE using parameter substitution

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, Vol. 1, 17-21 May 2004, pp. I-477 - I-480.

Summary

The estimation of speech parameters and the intelligibility of speech transmitted through low-rate coders, such as MELP, are severely degraded when there are high levels of acoustic noise in the speaking environment. The application of nonacoustic and nontraditional sensors, which are less sensitive to acoustic noise than the standard microphone, is being investigated as a means to address this problem. Sensors being investigated include the General Electromagnetic Motion Sensor (GEMS) and the Physiological Microphone (P-mic). As an initial effort in this direction, a multisensor MELPe coder using parameter substitution has been developed, where pitch and voicing parameters are obtained from GEMS and PMic sensors, respectively, and the remaining parameters are obtained as usual from a standard acoustic microphone. This parameter substitution technique is shown to produce significant and promising DRT intelligibility improvements over the standard 2400 bps MELPe coder in several high-noise military environments. Further work is in progress aimed at utilizing the nontraditional sensors for additional intelligibility improvements and for more effective lower rate coding in noise.
READ LESS

Summary

The estimation of speech parameters and the intelligibility of speech transmitted through low-rate coders, such as MELP, are severely degraded when there are high levels of acoustic noise in the speaking environment. The application of nonacoustic and nontraditional sensors, which are less sensitive to acoustic noise than the standard microphone...

READ MORE

Automated lip-reading for improved speech intelligibility

Published in:
Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, Vol. I, 17-21 May 2004, pp. I-701 - I-704.

Summary

Various psycho-acoustical experiments have concluded that visual features strongly affect the perception of speech. This contribution is most pronounced in noisy environments where the intelligibility of audio-only speech is quickly degraded. An exploration of the effectiveness for extracted visual features such as lip height and width for improving speech intelligibility in noisy environments is provided in this paper. The intelligibility content of these extracted visual features will be investigated through an intelligibility test on an animated rendition of the video generated from the extracted visual features, as well as on the original video. These experiments demonstrate that the extracted video features do contain important aspects of intelligibility that may be utilized in augmenting speech enhancement and coding applications. Alternatively, these extracted visual features can be transmitted in a bandwidth effective way to augment speech coders.
READ LESS

Summary

Various psycho-acoustical experiments have concluded that visual features strongly affect the perception of speech. This contribution is most pronounced in noisy environments where the intelligibility of audio-only speech is quickly degraded. An exploration of the effectiveness for extracted visual features such as lip height and width for improving speech intelligibility...

READ MORE

Exploiting nonacoustic sensors for speech enhancement

Summary

Nonacoustic sensors such as the general electromagnetic motion sensor (GEMS), the physiological microphone (P-mic), and the electroglottograph (EGG) offer multimodal approaches to speech processing and speaker and speech recognition. These sensors provide measurements of functions of the glottal excitation and, more generally, of the vocal tract articulator movements that are relatively immune to acoustic disturbances and can supplement the acoustic speech waveform. This paper describes an approach to speech enhancement that exploits these nonacoustic sensors according to their capability in representing specific speech characteristics in different frequency bands. Frequency-domain sensor phase, as well as magnitude, is found to contribute to signal enhancement. Preliminary testing involves the time-synchronous multi-sensor DARPA Advanced Speech Encoding Pilot Speech Corpus collected in a variety of harsh acoustic noise environments. The enhancement approach is illustrated with examples that indicate its applicability as a pre-processor to low-rate vocoding and speaker authentication, and for enhanced listening from degraded speech.
READ LESS

Summary

Nonacoustic sensors such as the general electromagnetic motion sensor (GEMS), the physiological microphone (P-mic), and the electroglottograph (EGG) offer multimodal approaches to speech processing and speaker and speech recognition. These sensors provide measurements of functions of the glottal excitation and, more generally, of the vocal tract articulator movements that are...

READ MORE

Showing Results

1-8 of 8