Publications

Refine Results

(Filters Applied) Clear All

Weather radar development and application programs

Author:
Published in:
Lincoln Laboratory Journal, Vol. 12, No. 2, 2000, pp. 367-382.

Summary

Weather phenomena such as microburst wind shear and severe thunderstorms are major concerns to the aviation industry. A number of significant airplane accidents have resulted from wind-shear encounters during takeoff and landing, and thunderstorms are a major contributor to airplane delay. Providing fully automated and timely warnings of these phenomena by radar is challenging because it requires rapid and accurate analysis of the three-dimensional storm structure in the presence of intense ground-clutter returns. For the last two decades, Lincoln Laboratory has been tackling this challenge by applying advanced radar signal- and image-processing techniques to weather radar data. The resulting technology is being deployed in radar-based weather information systems at major airports throughout the United States. We first discuss the salient meteorological factors that contribute to the formation of microburst wind shear, then we provide some general background on the use of pulse-Doppler radar for weather detection. We describe two specific Lincoln Laboratory programs that have generated deployed systems: the Terminal Doppler Weather Radar (TDWR) and the ASR-9 Weather Systems Processor (WSP). The article concludes with a discussion of future detection strategies that emphasizes the fusion of weather radar data by the Integrated Terminal Weather System (ITWS).
READ LESS

Summary

Weather phenomena such as microburst wind shear and severe thunderstorms are major concerns to the aviation industry. A number of significant airplane accidents have resulted from wind-shear encounters during takeoff and landing, and thunderstorms are a major contributor to airplane delay. Providing fully automated and timely warnings of these phenomena...

READ MORE

Weather sensing and data fusion to improve safety and reduce delays at major west coast airports

Published in:
MIT Lincoln Laboratory Report ATC-290

Summary

The objective of this study was to analyze the weather sensing and data fusion required to improve safety and reduce delays at a number of west coast airports that are not currently scheduled to receive an Integrated Terminal Weather System (ITWS). This report considers the Los Angeles (LAX), San Francisco (SFO), Seattle (SEA) and Portland, OR (PDX) international airports. A number of visits were made to the various ATC facilities to better understand their weather decision support operational needs. Analyses were made of an incident of lightning strikes to two aircraft at SEA in February 1999, and a prototype terminal winds product was developed for LAX that uses profilers as well as plane reports to update the the National Weather Service (NWS) Rapid Update Cycle (RUC) winds estimates. We found that an augmented ITWS could potentially address safety concerns for triggered lightning strikes and vertical wind shear in winter storms at Portland and Seattle. An augmented ITWS terminal winds product (that uses wind profiler data in addition to the current ITWS sensors) could provide very large delay reductions for LAX and SFO during winter storms as a component of a wake vortex advisory system. This augmented product also could provide significant delay reduction benefits at SEA. The sensors required to obtain the projected benefits at SFO do not exist currently. Portland may warrant additional sensors to address the vertical wind shear problems, and LAX would require additional sensors for a wake vortex advisory system. We recommend near-term experimental measurements at PDX to determine the optimum sensor mix and that an operational evaluation of the prototype augmented ITWS terminal winds product be carried out at LAX to determine if the current sensor mix can meet operational needs. Lightning strike data at SEA and PDX should be analyzed to determine if a proposed triggered lightning predictant is accurate.
READ LESS

Summary

The objective of this study was to analyze the weather sensing and data fusion required to improve safety and reduce delays at a number of west coast airports that are not currently scheduled to receive an Integrated Terminal Weather System (ITWS). This report considers the Los Angeles (LAX), San Francisco...

READ MORE

Achieving higher integrity in NEXRAD products through multi-sensor integration

Author:
Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM), 10-15 January 1999.

Summary

The initial operational concept for the NEXRAD focused on support for the operational forecaster based on longstanding practice in use of weather radars by the National Weather Service (NWS) and Air Force as well as difficulties in developing reliable, fully automated phenomena detection algorithms [Crum, 1998]. By contrast, achieving high integrity in the narrow band products provided by NEXRAD to external users has received much less attention in the NEXRAD product development process thus far. However, other government weather information systems [especially the FAA's Integrated Terminal Weather System (ITWS) and the Weather and Radar Processor (WARP)] and non-meteorologist external users of the NEXRAD products through the NEXRAD Information Distribution System (NIDS) vendors need very high integrity NEXRAD products. In the NWS context, the direct utilization of NEXRAD products into numerical weather prediction models will also create much more stringent requirements for integrity of the NEXRAD base data. Achieving very high integrity through automated analysis of only the data from a single NEXRAD is very difficult. In this paper, we consider the use of a much wider range of contextual information to create high integrity external user products. For instance, with the NEXRAD Open RPG and connectivity to AWIPS and ITWS, a system architecture will exist that will facilitate the implementation of NEXRAD product quality control algorithms that utilize information from other sensors. In the following sections, we present some examples of how information from various other sources might be used to improve the quality of the data from a NEXRAD. We first show an example of how data from adjacent NEXRADs can be used to help edit out the anomalous propagation (AP) ground clutter which currently is corrupting a number of the NEXRAD reflectivity products intended for air traffic controller use. In cases where the NEXRAD is near a major metropolitan area, data from the FAA's TDWR can be used to improve the integrity of the NEXRAD reflectivity products used for hydrology. Similarly, gridded wind fields estimated from multiple Doppler analyses, aircraft reports, and numerical models can be used to help address difficult challenges in Doppler ambiguity resolution for a single NEXRAD radar. The paper concludes with suggestions for near term demonstration and evaluation of multi sensor approaches to achieving high integrity in the NEXRAD products.
READ LESS

Summary

The initial operational concept for the NEXRAD focused on support for the operational forecaster based on longstanding practice in use of weather radars by the National Weather Service (NWS) and Air Force as well as difficulties in developing reliable, fully automated phenomena detection algorithms [Crum, 1998]. By contrast, achieving high...

READ MORE

Addressing the weather delay problems of the New York City airports with the Integrated Terminal Weather System

Author:
Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology, 10-15 1999.

Summary

The three major New York City (NYC) air carrier airports (Kennedy, LaGuardia, Newark) currently experience high delays due to adverse terminal weather, both in an absolute sense and relative to other major airport complexes. Significantly expanding the NYC airports (e.g., by adding new runways) to reduce delays is not feasible. One alternative is to provide aviation weather decision support systems to air traffic, airline, and airport operations personnel to help them operate more safely and effectively with the existing runway/taxiway complexes. Under an innovative partnership between the Port Authority of New York and New Jersey and the Federal Aviation Administration (FAA), Massachusetts Institute of Technology, Lincoln Laboratory has installed and is currently operating a functional prototype Integrated Terminal Weather System (ITWS) to conduct research on improving the safety and efficiency of operations at the NYC airports during adverse weather. The New York terminal area provides a stringent test of the ITWS ability to safely reduce delays due to both the meteorology and the operational usage challenges not found at the earlier ITWS test locations of Orlando, Memphis, and Dallas. In this paper, we describe key features of the New York terminal environment and the ITWS prototype, the initial experience in addressing the meteorological and operational usage challenges of the New York terminal area, and describe plans for the coming years.
READ LESS

Summary

The three major New York City (NYC) air carrier airports (Kennedy, LaGuardia, Newark) currently experience high delays due to adverse terminal weather, both in an absolute sense and relative to other major airport complexes. Significantly expanding the NYC airports (e.g., by adding new runways) to reduce delays is not feasible...

READ MORE

Performance characteristics of an algorithm used to remove anomolous propagation from the NEXRAD data

Published in:
28th Conf. on Radar Meteorology, 7-12 September 1997, pp. 317-319.

Summary

An important limitation of precipitation sensors is contamination from ground clutter targets under conditions of anomalous propagation (AP). This problem can be mitigated significantly by high-pass clutter filters such as used by the Terminal Doppler Weather Radar (TDWR) and Next Generation Weather Radar (NEXRAD) systems....MIT Lincoln Laboratory (MIT/LL) has developed and tested an algorithm that removes AP from the NEXRAD reflectivity data. In this paper, we will first provide a brief description of the algorithm. Next we will present the truthing methodology used to identify AP. Then, we will show the algorithm performance results and failure mechanisms with this initial version. Finally, we consider refinements to improve the algorithm's performance.
READ LESS

Summary

An important limitation of precipitation sensors is contamination from ground clutter targets under conditions of anomalous propagation (AP). This problem can be mitigated significantly by high-pass clutter filters such as used by the Terminal Doppler Weather Radar (TDWR) and Next Generation Weather Radar (NEXRAD) systems....MIT Lincoln Laboratory (MIT/LL) has developed...

READ MORE

Analysis of downstream impacts of air traffic delay

Published in:
MIT Lincoln Laboratory Report ATC-257

Summary

Reduction of air carrier flight delay in the U.S. National Airspace System (NAS) has been a major objective of the Federal Aviation Administration (FAA) for many years. Much of the current delay arises from weather-induced delays at airports. When a plane is delayed on one of the day's flights, there can be a carryover delay that affects later flights by that aircraft. In this report, we develop statistical models to predict: 1. The "downstream" delays that occur when a flight experiences an initial delay, and 2. The likelihood of flight cancellation as a function of the initial delay. Using historical airline-reported delays for December 1993, we conclude that the mean "downstream" delay is approximately 80 percent of the initial delay, i.e., the net delay for an aircraft due to an initial flight delay is approximately 1.8 x the initial delay.
READ LESS

Summary

Reduction of air carrier flight delay in the U.S. National Airspace System (NAS) has been a major objective of the Federal Aviation Administration (FAA) for many years. Much of the current delay arises from weather-induced delays at airports. When a plane is delayed on one of the day's flights, there...

READ MORE

Measuring the economic value of aviation meteorological products

Author:
Published in:
9th Conf. on Applied Climatology, 15-20 January 1995.

Summary

The aviation system is one of the principal users of weather information. Assessing the benefits of weather information to aviation is important in a number of contexts: 1. Detemining the priority of investments in aviation weather information vis a vis other options for transportation and/or weather system investments, 2. Determinins priorities for research, implementation, facility staffing and information distribution, 3. The allocation of roles and responsibilities between various government agencies and private industry for various functions, and 4. Use in forecasting to set thresholds (see, e.g., [Felton, 1991], [Andrews, 1993], and [Liljas and Murphy, 1994]) With reduced government funding in a variety of areas related to aviation weather and with cost pressures on the users of the weather information (especially the air carriers), the importance of carefully performed benefits assessment has increased significantly in the past decade and is expected to become even more important in the near future. Our discussion will focus on safety and delay reduction. In the case of safety, we will consider in some depth the case of the deloyment of wind shear detection systems, while delay reduction will focus on results from recent studies of improved information on airport weather. In each case, we will also identify issues related to other benefits assessments in these areas.
READ LESS

Summary

The aviation system is one of the principal users of weather information. Assessing the benefits of weather information to aviation is important in a number of contexts: 1. Detemining the priority of investments in aviation weather information vis a vis other options for transportation and/or weather system investments, 2. Determinins...

READ MORE

Supporting the deployment of the Terminal Doppler Weather Radar (TDWR)

Published in:
Lincoln Laboratory Journal, Vol. 7, No. 2, Fall 1994, pp. 379-398.

Summary

The Terminal Doppler Weather Radar (TDWR) program was initiated in the mid-1 980s to develop a reliable automated Doppler-radar-based system for detecting weather hazards in the airport terminal area and for providing warnings that will help pilots avoid these hazards when landing and departing. This article describes refinements made to the TDWR system since 1988, based on subsequent Lincoln Laboratory testing in Kansas City, Missouri, and Orlando, Florida. During that time, Lincoln Laboratory developed new capabilities for the system such as the integration of warnings from TDWR and the Low Level Wind Shear Alert System (LLWAS). Extensive testing with the Lincoln Laboratory TDWR testbed system has reconfirmed the safety benefits of TDWR.
READ LESS

Summary

The Terminal Doppler Weather Radar (TDWR) program was initiated in the mid-1 980s to develop a reliable automated Doppler-radar-based system for detecting weather hazards in the airport terminal area and for providing warnings that will help pilots avoid these hazards when landing and departing. This article describes refinements made to...

READ MORE

The Integrated Terminal Weather System (ITWS)

Published in:
Lincoln Laboratory Journal, Vol. 7, No. 2, Fall 1994, pp. 449-474.

Summary

The Integrated Terminal Weather System (ITWS) is one of two major development projects sponsored by the FMs Aviation Weather Development Program. Focused on the environment within the airport terminal area, ITWS integrates data from FAA and National Weather Service (NWS) sensors and systems to provide a suite of weather informational products for improving air terminal planning, capacity, and safety. This article provides an overview of the ITWS project, presenting the system concept, some of the design and engineering challenges, and plans for development that will lead to operational systems in the field.
READ LESS

Summary

The Integrated Terminal Weather System (ITWS) is one of two major development projects sponsored by the FMs Aviation Weather Development Program. Focused on the environment within the airport terminal area, ITWS integrates data from FAA and National Weather Service (NWS) sensors and systems to provide a suite of weather informational...

READ MORE

ITWS and the NWS forecaster: what is the connection?

Author:
Published in:
Nat. Weather Dig., Vol. 18, No. 4, June 1994, pp. 43-47.

Summary

The Federal Aviation Administration (FAA) is sponsoring the development of the Integrated Terminal Weather System (ITWS), which is designed to acquire all of the weather data that is available in the terminal area, both ground-based and aircraft sensed, and to provide short-term (0 to 30-minute) predictions of microbursts, wind shear, gust fronts, runway winds and terminal-area ceiling and visibility. Additionally, the ITWS will be generating the 4-dimensional wind field at many levels in the terminal area, mainly for use by other FAA terminal air traffic control automation systems, but also available as a graphical display. An area of interest and concern to the developers is the interaction between the automated, very-short-term predictions of the ITWS, and the National Weather Service (NWS) aviation meteorologist, who is responsible for issuing terminal forecasts and other aviation advisory and warning products. This paper will describe the ITWS as currently planned and will explore the possible relationships between the ITWS and the NWS forecaster. Consideration will also be given to the NWS's new Advanced Weather Interactive Processing System (AWIPS) and how ITWS information might be used in the terminal forecasting process. This paper is intended to spark discussion of the role of the ITWS in the NWS forecasting process of the future.
READ LESS

Summary

The Federal Aviation Administration (FAA) is sponsoring the development of the Integrated Terminal Weather System (ITWS), which is designed to acquire all of the weather data that is available in the terminal area, both ground-based and aircraft sensed, and to provide short-term (0 to 30-minute) predictions of microbursts, wind shear...

READ MORE