Publications

Refine Results

(Filters Applied) Clear All

Evaluation of Eta model forecasts as a backup weather source for CTAS

Published in:
AIAA Guidance, Navigation and Control Conf.: a collection of Technical Papers, Vol. 3, 6-9 August 2001, pp. 1837-1842.

Summary

Knowledge of present and future winds and temperature is important for air traffic operations in general, but is crucial for Decision Support Tools (DSTs) that rely heavily on accurately predicting trajectories of aircraft. One such tool is the Center-TRACON Automation System (CTAS) developed by NASA Ames Research Center. The Rapid Update Cycle (RUC) system is presently the principal source of weather information for CTAS. RUC provides weather updates on an hourly basis on a nationwide grid with horizontal resolution of 40 km and vertical resolution of 25 mb in pressure. However, a recent study of RUC data availability showed that the NWS and NOAA servers are subject to frequent service interruptions. Over a 210 day period (4/19/00-11/11/00), the availability of two NOAA and one NWS RUC server was monitored automatically. It was found that 60 days (29%) had periods of one hour or more where at least one server was out, with the longest outage lasting 13 hours on 9/21/00. In addition, there were 9 days (4%) for which all three servers were simultaneously unavailable, with the longest outage lasting 6 hours on 5/7/00. Moreover, even longer outages have been experienced with the RUC servers over the past several years. RUC forecasts are provided for up to 12 hours, but these are not currently used in CTAS as back up sources (except that the 1 or 2 hour forecasts are used for the current winds to compensate for transmission delays in obtaining the RUC data). Since RUC outages have been experienced for longer than 12 hours, it is therefore necessary to back RUC up with another weather source providing long-range forecasts. This paper examines the use of the Eta model forecasts as a back-up weather sources for CTAS. A specific output of the Eta km model, namely Grid 104, was selected for evaluation because its horizontal and vertical resolution, spatial extent and output parameters match most closely those of RUC. While RUC forecasts for a maximum of 12 hours into the future, Eta does so for up to 60 hours. In the event that a RUC outage would occur, Eta data could be substituted. If Eta data also became unavailable, the last issued forecasts could allow CTAS to continue to function properly for up to 60 hours. The approach used for evaluating the suitability of the Eta model and RUC forecasts was to compare them with the RUC analysis output or 0 hour forecast file, at the forecast time. Not surprisingly, it was found that the RUC model forecasts had lower wind magnitude errors out to 12 hours (the limit of the RUC forecasts) than the Eta model had. Hosever, the wind magnitude error for the Eta model grew only from 9 ft/s at 12 hours (comparable with RUC) to 11 ft/s at 48 hours. We therefore conclude that RUC forecasts should be used for outages up to 12 hours and Eta model forecasts should be used for outages up to 60 hours.
READ LESS

Summary

Knowledge of present and future winds and temperature is important for air traffic operations in general, but is crucial for Decision Support Tools (DSTs) that rely heavily on accurately predicting trajectories of aircraft. One such tool is the Center-TRACON Automation System (CTAS) developed by NASA Ames Research Center. The Rapid...

READ MORE

A statistical analysis of approach winds at capacity-restricted airports

Published in:
19th AIAA/IEEE Digital Avionics Systems Conf., Vol. 1, 7-13 October 2000, pp. 3.E.4-1 - 3.E.4-7.

Summary

Many major airports in the U.S. rely on simultaneous approaches to closely-spaced parallel (CSP) runways to maintain a high airport acceptance rate. During Visual Meteorological Conditions (VMC), aircraft are able to utilize both runways by making side-by-side landings and are able to meet the demands of heavy volume. However, when conditions deteriorate to marginal-VMC or Instrument Meteorological Conditions (IMC), side-by-side approaches are not possible due to the inherent safety concerns associated with lowered ceilings and visibilities. This situation is severely limiting to an airport's capacity and can create large delays and increased costs. Various ideas have been suggested that would facilitate the simultaneous use of CSP runways during low ceiling and visibility (LCV) conditions at capacity-restricted airports. This report addresses the specific scenario of a pair of approaching aircraft being staggered by some longitudinal distance. This situation alleviates the collision hazard presented by LCV conditions, but also introduces the hazard of a wake vortex encounter, particularly if the following aircraft is downwind of the leading aircraft.
READ LESS

Summary

Many major airports in the U.S. rely on simultaneous approaches to closely-spaced parallel (CSP) runways to maintain a high airport acceptance rate. During Visual Meteorological Conditions (VMC), aircraft are able to utilize both runways by making side-by-side landings and are able to meet the demands of heavy volume. However, when...

READ MORE

Learning from incidents - what the machine can learn

Published in:
Int. Society of Air Safety Investigators Conf., ISASI, 2-6 October 2000.

Summary

Aviation weather refers to any type of weather that can affect the operation of an aircraft – anything from a brief delay in departure to a catastrophic accident during flight. Wind shear and events associated with convective weather were recognized as an aviation hazard long before Dr. Theodore Fujita began publishing his now-famous treatises. On July 28, 1943, American Airlines Flight 63 from Cleveland, Ohio, USA to Nashville, Tennessee crashed after the pilot lost control of the Douglas DC3. The pilots and numerous passengers were fatally injured. The aircraft was destroyed by impact and post crash fire. The weather report at the time included warnings for storms, heavy rain, lightning and severe turbulence. The Civil Aeronautics Board found that the probable cause was a loss of control of the aircraft due to unusually severe turbulence and violent downdraft caused by a thunderstorm. In the ten-year period from 1987 through 1996, 24% of all U.S. accidents were judged to be "weather related". For the twenty-year period 1976 to 1996 fully 43% of U.S. accidents were judged to have involved wind or wind shear, and 2.3 % thunderstorm, although the two data elements are not mutually exclusive. In the U.S., approximately 82% of accidents are general aviation; the rest are air carriers and commuters of various types. When general aviation accidents are negated, and only air carriers are considered, wind and wind shear issues account for 9.5% of accidents. The Weather Systems Processor (WSP) has been developed to reduce the impact of severe weather conditions on air traffic by providing information concerning weather conditions in the airport terminal environment. WSP provides warnings to air traffic controllers and supervisors of hazardous wind shear and microburst events in the terminal area, forecasts the arrival of gust fronts, and tracks thunderstorms, providing a complete picture of current and future terminal area hazardous weather conditions that may impact runway and airport usage. Common weather situation awareness allows Terminal Approach, Tower Controllers and other traffic management personnel to jointly plan with confidence and safely manage more arrivals and departures with less delay. Knowledge of the location, severity and movement of hazardous weather allows dynamic adjustments to be made in routing aircraft to runways, approach and departure corridors, terminal arrival and departure transition areas (i.e. gate-posts) and other air routes.
READ LESS

Summary

Aviation weather refers to any type of weather that can affect the operation of an aircraft – anything from a brief delay in departure to a catastrophic accident during flight. Wind shear and events associated with convective weather were recognized as an aviation hazard long before Dr. Theodore Fujita began...

READ MORE

A meteorological analysis of the American Airlines Flight 1420 accident

Author:
Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 209-211.

Summary

On June 1, 1999, American Airlines flight 1420 , arriving at Little Rock, AR from Dallas-Fort Worth, TX, was involved in a fatal accident upon landing, on runway 4R at Adams Field (LIT). There were eleven casualties, including the pilot, and numerous injuries among the 145 passengers and crew on board. At the time of the accident, 0451 UTC (11:51 PM CDT), severe thunderstorms existed in the vicinity of the airport. These storms were initiated by an approaching cold front and pre-frontal trough and were developmentally aided by veering low-level wind and warm air advection, which helped to further destabilize the atmosphere. This report will focus on the meteorological conditions preceding and immediately following the accident that could have played a contributing role in the crash. However, no theories on the actual cause will be put forth.
READ LESS

Summary

On June 1, 1999, American Airlines flight 1420 , arriving at Little Rock, AR from Dallas-Fort Worth, TX, was involved in a fatal accident upon landing, on runway 4R at Adams Field (LIT). There were eleven casualties, including the pilot, and numerous injuries among the 145 passengers and crew on...

READ MORE

ITWS and ITWS/LLWAS-NE runway alert performance at Dallas-Ft. Worth and Orlando

Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 590-595.

Summary

The Integrated Terminal Weather System (ITWS) provides runway-orientated wind shear and microburst alerts to enhance the safety of flight operations at major U.S. airports. The alerts are reported as either losses or gains of airspeed, representing performance decreasing or performance increasing wind shears. The performance of ITWS as a stand-alone system has been thoroughly documented in previous research. During the 1994 ITWS Demonstration and Validation testing, the probability of detection (POD) and probability of false alarm (PFA) at Memphis (MEM) and Orlando (MCO) for all loss events were > 90 and < 5 percent, respectively, based on single-Doppler truth. The Low-Level Windshear Alert System-Network Expansion (LLWAS-NE) also generates runway alerts in the same format as ITWS. LLWAS-NE is not subject to viewing angle problems such as those experienced by single-Doppler radar. However, false alarms caused by LLWAS-NE sensor failures at some Terminal Doppler Weather Radar (TDWR) sites have reduced user confidence in the system. At those ITWS sites with an LLWAS-NE, the ITWS alerts derived from TDWR data will be integrated with LLWAS-NE alerts, hopefully to improve the performance. The ITWS integration algorithm is identical to the TDWR version, with the exception of a few adaptable parameter changes. The ITWS/LLWAS-NE parameters were modified slightly to account for ITWS and TDWR algorithm performance differences. In this paper, the performance of a stand-alone ITWS and the ITWS/LLWAS-NE integration algorithm at the MCO and Dallas-Ft. Worth (DFW) demonstration sites will be discussed. This assessment is considered unique since the radar and anemometer data were combined to create the runway truth. The focus of this research is to identify the shortcomings of both systems in order to recommend modifications that will improve the integration algorithm performance.
READ LESS

Summary

The Integrated Terminal Weather System (ITWS) provides runway-orientated wind shear and microburst alerts to enhance the safety of flight operations at major U.S. airports. The alerts are reported as either losses or gains of airspeed, representing performance decreasing or performance increasing wind shears. The performance of ITWS as a stand-alone...

READ MORE

Operational experience with weather products generated through joint use of FAA and NWS weather radar sensors

Author:
Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology and 20th Conf. on Severe Local Storms, 11-15 September 2000, pp. J19-J23.

Summary

In this paper, we describe current joint use of Federal Aviation Administration (FAA) and National Weather Service (NWS) radar sensors to provide operational weather decision support for the FAA, airline operations centers, and NWS forecast offices. The capabilities that have been demonstrated include fully automatic data editing and short term "nowcast" product generation algorithms as well as display of data from the different radars in different windows; direct product distribution to operational decision makers without any intervening meteorologist input; and collaborative decision making between the various parties. The significant use of fully automated product generation algorithms has facilitated flexible, coordinated decision making in real time at many locations simultaneously, without the high personnel costs that would be required to achieve the same weather product generation capability manually through interpretation by experienced radar meteorologist/forecasters. These joint-use capabilities have been demonstrated operationally at the Integrated Terminal Weather System (ITWS) demonstration sites in Memphis, TN, Orlando, FL, Dallas, TX, and Garden City, NY. These sites have provided operational service for the four major terminal areas since 1994.1 Specific capabilities used operationally by FAA- and airline users, which are discussed in the next section, include: 1. Addressing radar data quality issues such as rain attenuation and AP-induced ground clutter contamination, 2. High update rates for detection of rapidly changing weather while also obtaining 3D information on storms, 3. Estimating 3D winds, and 4. Reducing the fraction of phenomena that are not accurately characterized because the radars can directly measure radial velocity only. Section 3 discusses the operational usage of integrated products by NWS forecast offices at the ITVVS demonstration sites. The paper concludes with a summary of the operational uses to date and makes some suggestions for NWS and USAF use of FAA radar sensors in conjunction with NEXt generation weather RADars (NEXRAD).
READ LESS

Summary

In this paper, we describe current joint use of Federal Aviation Administration (FAA) and National Weather Service (NWS) radar sensors to provide operational weather decision support for the FAA, airline operations centers, and NWS forecast offices. The capabilities that have been demonstrated include fully automatic data editing and short term...

READ MORE

Weather sensing and data fusion to improve safety and reduce delays at major west coast airports

Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 102-107.

Summary

In this paper we present results from a recently completed study of weather sensing and data fusion to improve safety and reduce delays at major west coast airports. With the exception of a summer stratus burn-off prediction project at San Francisco, these airports have received much less attention in terms of advanced FAA terminal weather decision support systems than major airports east of Los Angeles. This is because the principal concern for terminal weather decision support to date has been microburst-induced wind shear, which is very infrequent at the west coast airports. However, three factors warrant a reexamination of weather decision support provided to these major west coast airports: 1. The increased emphasis on significantly improving aviation safety while reducing delays at major airports in the face of expected increases in operations rates within the National Airspace System (NAS), 2. New air traffic management technology such as terminal automation, collaborative decision making (CDM), and weather adaptive wake vortex spacing systems, and 3. Advances in terminal weather decision support technology represented by the Integrated Terminal Weather System (ITWS) [including various P31 enhancements to ITWS (Evans and Wolfson, 2000)] The airports considered in this study were the Los Angeles (LAX), San Francisco (SFO), Portland (PDX) and Seattle (SEA) International Airports. It should be noted that because these airports did not receive a Terminal Doppler Weather Radar, there currently is no plan to provide them with an ITWS. LAX, SF0 and PDX are scheduled to receive an ASR-9 Weather System Processor (WSP). The paper proceeds as follows. Section 2 discusses the study's methodology and provides background information on delays and weather phenomena for these airports in the context of other major US airports as well as applicable air traffic management (ATM) and terminal weather system technology. Section 3 summarizes the principal findings for the four airports. We conclude with a summary of the potential benefits of improved weather sensing and data fusion that might be provided at these west coast airports by an augmented ITWS as well as recommendations for further studies.
READ LESS

Summary

In this paper we present results from a recently completed study of weather sensing and data fusion to improve safety and reduce delays at major west coast airports. With the exception of a summer stratus burn-off prediction project at San Francisco, these airports have received much less attention in terms...

READ MORE

Developing a mosiacked gust front detection algorithm for TRACONS with multiple TDWRS

Published in:
Proc. Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 494-498.

Summary

Gust front detection is an important Initial Operational Capability (IOC) of the Integrated Terminal Weather System (ITWS). The Machine Intelligent Gust Front Algorithm (MIGFA) being deployed for ITWS uses multi-dimensional, knowledge-based signal processing techniques to detect and track gust fronts in Terminal Doppler Weather Radar (TDWR) data. Versions of MIGFA have also been developed for the ASR-9 Weather Systems Processor (WSP) and NEXRAD, and within the past year MIGFA was installed as the primary gust front detection algorithm for operational TDWRs throughout the United States. (Not complete.)
READ LESS

Summary

Gust front detection is an important Initial Operational Capability (IOC) of the Integrated Terminal Weather System (ITWS). The Machine Intelligent Gust Front Algorithm (MIGFA) being deployed for ITWS uses multi-dimensional, knowledge-based signal processing techniques to detect and track gust fronts in Terminal Doppler Weather Radar (TDWR) data. Versions of MIGFA...

READ MORE

FAA terminal convective weather forcast algorithm assessment

Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 365-370.

Summary

Air traffic delay due to convective weather reached historically high levels in 1999, as passengers blamed airlines and airlines blamed the FAA for the massive inconveniences. While coordination between the FAA's System Command Center and the regional centers and terminals can be expected to improve with the FAA's new initiatives, it is clear that air traffic management and planning during convective weather will ultimately require accurate convective weather forecasts. In addition to improving system capacity and reducing delay, convective forecasts can help provide safer flight routes as well. The crash of a commercial airliner at Little Rock, AR in June 1999 after a one-hour flight from Dallas/Ft. Worth illustrates the dangers and potential tactical advantage that could be gained with frequently updated one-hour forecasts of convective storms. The Terminal Convective Weather Forecast (TCWF) product has been developed by MIT Lincoln Laboratory as part of the FAA Aviation Weather' Research Convective Weather Product Development Team (PDT). Lincoln began by consulting with air traffic personnel and commercial airline dispatchers to determine the needs of aviation users (Forman, et. al., 1999). Users indicated that convective weather, particularly line storms, caused the most consistent problems for managing air traffic. The "Growth and Decay Storm Tracker" developed by Wolfson et al. (1999) allows the generation of up to 1-hour forecasts of large scale, organized precipitation features with operationally useful accuracy. This patented technology. represents a breakthrough in short-term forecasting capability, providing quantitative envelope tracking as opposed to the usual cell tracking. This tracking technology is now being utilized in NCAR's AutoNowcaster (Mueller, et al., 2000), the National Convective Weather Forecast running at the Aviation Weather Center (Megenhardt, et al., 2000) and by private sector meteorological data vendors. The TCWF has been tested in Dallas/Ft. Worth (DFW) since 1998, in Orlando (MCO) since 1999, and in New York (NYC) since fiscal year 2000 began. These have been informal demonstrations, with the FAA William J. Hughes Technical Center (WJHTC) assessing utility to the users, and with MIT LL modifying the system based on user feedback and performance analyses. TCWF has undergone major revisions, and the latest build has now been deployed at all sites. The TCWF is now in a formal assessment phase at the Memphis international Airport as a prerequisite to an FAA operational requirement. The FAA Technical Center will make a recommendation on whether TCWF is suitable for inclusion in the FAA's operational integrated Terminal Weather System (ITWS), which has an unmet requirement for 30+ minute forecasts of convective weather. Memphis was selected for the TCWF Assessment since it has not been exposed to the forecast product during prior demonstrations. Operations began on March 24, 2000 and operational feedback is being assessed by the FAA Technical Center (McGettigan, et al., 2000) and MCR Corporation is performing a quantitative benefits assessment (Sunderlin and Paull, 2000). This paper details the refined TCWF algorithm and display concept, gives examples of the operational impact of terminal forecasts, and analyzes the technical performance of the TCWF during the early stages of the Memphis Assessment.
READ LESS

Summary

Air traffic delay due to convective weather reached historically high levels in 1999, as passengers blamed airlines and airlines blamed the FAA for the massive inconveniences. While coordination between the FAA's System Command Center and the regional centers and terminals can be expected to improve with the FAA's new initiatives...

READ MORE

Distribution of Integrated Terminal Weather System (ITWS) products using web technology

Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 147-152.

Summary

The Integrated Terminal Weather System (ITWS) is a capital investment of the Federal Aviation Administration (FAA) to provide a fully-automated, integrated terminal aviation weather information system that will improve the safety, efficiency, and capacity of major terminals. The ITWS acquires data from FAA and National Weather Service sensors as well as from aircraft in flight within the terminal area. Demonstration systems are being operated by the Massachusetts Institute of Technology's Lincoln Laboratory (MIT/LL) Weather Sensing Group at four airport terminal areas: New York, NY; Orlando, FL; Memphis, TN; and Dallas/Ft. Worth, TX. Real-time graphical weather information from the ITWS demonstration systems is relayed to primary users (airport towers, en route centers, TRACONS, the Command Center, and major airlines, etc.) via a situation display (SD) that consists of a Sun workstation and, a dedicated data line to the ITWS site. For users who do not have access to a fully operational SD or who want additional flexibility for accessing the ITWS information, MIT/LL operates a demonstration ITWS web server that provides the information for viewing with commercial-off-the-shelf (COTS) web browsers over the Internet and via the Collaborative Decision Making Network (CDMnet). This distribution of ITWS products has provided shared situational awareness between widely separated users. By sharing a common view of the same operational environment, controllers, dispatchers and other aviation decision makers and stakeholders have been better able to understand and coordinate the decisions that affect air traffic in the terminal area and surrounding en route airspace. In particular, by having up-to-the-minute weather information readily available to airline dispatch, safety during hazardous weather in the terminal area has been improved on a number of occasions at the ITWS demonstration sites (Evans, 2000). With the upcoming deployment of the ITWS as an operational FAA system to 44 major airports, a priority for the FAA is the distribution of the ITWS information from the production systems to airline dispatch and other non-FAA users. The operational ITWS is not designed to support SDS at the major airlines. Hence, distribution of ITWS information via a mechanism such as the Internet and the CDMnet is essential if the safety and coordination benefits achieved with the ITWS demonstration systems are to be obtained with the production ITWS. Because many airlines do not allow Internet access at all locations within the dispatch office, the current plan is to use CDMnet as the primary vehicle for ITWS data distribution to non-FAA users. However, to increase the availability of ITWS information to the broader ITWS user community, efforts are underway to make the data available on the Internet as well. Use of the Internet and CDMnet could also facilitate low-cost distribution of the ITWS information to additional FAA and non-FAA users alike. This paper describes the evolution of the ITWS demonstration web server, discusses the design of the web server and data processing, details how to access the web page and what products are currently available, presents some access statistics and current airline users, and discusses some future work which will allow for wide distribution of the production ITWS information.
READ LESS

Summary

The Integrated Terminal Weather System (ITWS) is a capital investment of the Federal Aviation Administration (FAA) to provide a fully-automated, integrated terminal aviation weather information system that will improve the safety, efficiency, and capacity of major terminals. The ITWS acquires data from FAA and National Weather Service sensors as well...

READ MORE