Publications

Refine Results

(Filters Applied) Clear All

A preliminary assessment of thunderstorm outflow wind measurement with airport surveillance radars

Published in:
MIT Lincoln Laboratory Report ATC-140

Summary

Modern airport surveillance radars (ASR), situated on or near most major air terminals, feature coherent pulse-Doppler processing, a vertical-fan beam and rapid azimuthal antenna scanning for detection and tracking of aircraft. These radars might serve an additional useful role by making radial wind measurements in the immediate vicinity of an airport so as to provide data on thunderstorm outflow winds. This report presents a preliminary analysis of the capabilities and limitations of ASRs in measuring outflow winds. Principal results are: (10) radar sensitivity is adequate to measure winds associated with weakly reflecting (5-20 dBZ) thunderstorm outflows at ranges less than 20 km provided that appropriate operating parameters are chosen; (2) overhanging precipitation, often moving at a markedly different radial velocity than the outflow, will be a significant source of interference owing to the verrtical-fan antenna pattern. If radar reflectivity is approximately constant with altitude, this interference will limit the maximum range for reliable outflow velocity measurements to about 20 km for an outflow that extends 1000 m above the surface and to 7 km for an outflow that extends only 300 m above the surface; (3) At two example major air terminals (Memphis International and Denver Stapleton) ground clutter suppression of approximately 40 dB, combined with the use of unter-clutter visibility techniques, would result in ad adequate signal-to-interference ratio for thunderstorm outflow velocity measurement over the significant approach/departure corridors. This result applies when the radar reflectivity factor in the outflow is 20 dBZ or greater and the associated winds extend at least 300 m above the surface.
READ LESS

Summary

Modern airport surveillance radars (ASR), situated on or near most major air terminals, feature coherent pulse-Doppler processing, a vertical-fan beam and rapid azimuthal antenna scanning for detection and tracking of aircraft. These radars might serve an additional useful role by making radial wind measurements in the immediate vicinity of an...

READ MORE

Spatial and temporal analysis of weather radar reflectivity images

Author:
Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, 6-9 April 1987, pp. 606-609.

Summary

This paper illustrates the use of a primitive symbolic description of an image to obtain more robust identification of amorphous objects than would be possible with more conventional edge or gradient-based segmentation techniques. An algorithm is described which uses a simple multi-level thresholding operation to form a symbolic representation of weather radar reflectivity images. This representation allows the use of detailed rules for the detection and quantification of the image features. A method is described for using this information to identify significant intensity peaks in an image, and examples of its performance are shown.
READ LESS

Summary

This paper illustrates the use of a primitive symbolic description of an image to obtain more robust identification of amorphous objects than would be possible with more conventional edge or gradient-based segmentation techniques. An algorithm is described which uses a simple multi-level thresholding operation to form a symbolic representation of...

READ MORE

Clutter suppression for low altitude wind shear detection by doppler weather radars

Published in:
23rd Conf. on Radar Meteorology, Vol. 1, 22-26 September 1986, pp. 9-13.

Summary

Low altitude wind shear (LAWS) has been recognized as a major cause of commercial airline aircraft accidents in the United States. The FAA is actively conducting the Terminal Doppler Weather Radar (TDWR) program to detect and identify dangerous wind fields at and around airports using Doppler radar techniques. Clutter poses a major challenge to successful operation of such a system due to the need to measure the return from low cross section wind tracers in the presence of close-in clutter from stationary objects. The paper describes the overall LAWS detection scenario with particular emphasis on microburst and gust front detection before presenting detailed experimental and analytical results on the suppression of ground clutter using a combination of: 1) subclutter visibility in excess of 50 dB by the use of high pass digital filters with narrow stopbands, and 2) interclutter visibility (ICV) algorithms which utilize the spatially distributed nature of the weather phenomena being measured, and 3) pencil beam antennas with readily achievable sidelobes.
READ LESS

Summary

Low altitude wind shear (LAWS) has been recognized as a major cause of commercial airline aircraft accidents in the United States. The FAA is actively conducting the Terminal Doppler Weather Radar (TDWR) program to detect and identify dangerous wind fields at and around airports using Doppler radar techniques. Clutter poses...

READ MORE

Assessment of ASR-9 weather channel performance: analysis and simulation

Author:
Published in:
MIT Lincoln Laboratory Report ATC-138

Summary

In this report, we use pencil-beam Doppler weather radar data, combined with on-airport ground clutter measurements, to analyze the performance of the six-level weather channel in the next generation airport surveillance radar, the ASR-9. A key tool was a computer procedure that used these data to simulate the output of the ASR-9's weather channel, including effects of the radar's fan-shaped elevation beams, short coherent processing intervals and ground clutter filters. Our initial analysis indicates that: (a) the combination of high-pass Doppler filters and spatial/temporal smoothing should normally prevent ground clutter from having a significant effect on the controllers' weather display; (b) the spatial/temporal smoothing processor will result in weather contours that are statistically stable on a to-scan basis, reinforcing controller confidence in the validity of the data; (c) relative to the coarse resolution imposed by use of the NWS levels, accurate two-dimensional parameterizations of storm reflectivity can be estimated. Our assessment indicates that the ASR-9's weather reflectivity maps should be reliable. The radar will be widely deployed at significant air terminals, and will provide a combination of high update rate and large volumetric coverage not available from other sensors. These attributes should lead the ASR-9 becoming an important component of the Federal Aviation Agency's modernized weather nowcasting system.
READ LESS

Summary

In this report, we use pencil-beam Doppler weather radar data, combined with on-airport ground clutter measurements, to analyze the performance of the six-level weather channel in the next generation airport surveillance radar, the ASR-9. A key tool was a computer procedure that used these data to simulate the output of...

READ MORE

Effect of interference on the performance of a minimum TCAS II

Published in:
MIT Lincoln Laboratory Report ATC-132

Summary

Minimum TCAS II equipment is required to operate reliably in all aircraft densities up to the 0.3 transponder-equipped aircraft per square nautical mile anticipated in the Los Angeles Basin in the year 2000. Prototype TCAS equipment has been developed and shown to be capable of providing reliable surveillance in today's highest densities, which reach an average of about 0.1 aircraft per square nmi. Since there are no existing environments that reach the density of asynchronous interference anticipated for the Los Angeles Basin in the year 2000, it is necessary to generate simulated interference to determine the performance of the TCAS II design in that environment. A series of bench tests were conducted at Lincoln Laboratory for this purpose. Special sources were used to generate asynchronous ATCRBS and Mode S reply signals (Fruit) and TCAN/DME squitter and interrogation signals. Synchronous ATCRBS and Mode S reply sequences were also generated to simulate airborne encounters. The performance was evaluated by observing hoe the interference signals either degraded the ability of a TCAS II unit to receive, process, and track the desired synchronous reply sequences, or caused the TCAS II unit to generate false tracks.
READ LESS

Summary

Minimum TCAS II equipment is required to operate reliably in all aircraft densities up to the 0.3 transponder-equipped aircraft per square nautical mile anticipated in the Los Angeles Basin in the year 2000. Prototype TCAS equipment has been developed and shown to be capable of providing reliable surveillance in today's...

READ MORE

TCAS II ATCRBS surveillance algorithms

Published in:
MIT Lincoln Laboratory Report ATC-131

Summary

The Traffic Alert and Collision Avoidance System (TCAS) has been developed to reduce mid air collisions between transponder equipped aircraft. The TCAS concept encompasses a range of capabilities. TCAS I is a low-cost version which provides traffic advisories only. TCAS II adds vertical resolution advisories and is intended to provide a comprehensive level of separation assurance in all current and predicted airspace environments through the end of this century. Enhanced TCAS II uses more accurate intruder bearing data to allow it to generate horizontal resolution advisories. All three forms of TCAS equipment track aircraft equipped with both the existing Air Traffic Control Radar Beacon System (ATCRBS) transponders and with the new Mode S transponders. A TCAS equipped aircraft makes ATCRBS or Mode S range measurements on nearby aircraft. The ATCRBS or Mode S replies contain the altitude of the aircraft if it has an encoding altimeter. TCAS II uses range rate and altitude rate to decide if a collision is imminent. Therefore the replies from a given aircraft must be tracked and correlated in range and altitude. This report documents surveillance techniques developed by Lincoln Laboratory for use by TCAS II equipment in tracking aircraft equipped with ATCRBS transponders. Specifically, it describes the two tracking algorithms used for ATCRBS replies. One algorithm is for aircraft that report altitude, and the other is for those that do not.
READ LESS

Summary

The Traffic Alert and Collision Avoidance System (TCAS) has been developed to reduce mid air collisions between transponder equipped aircraft. The TCAS concept encompasses a range of capabilities. TCAS I is a low-cost version which provides traffic advisories only. TCAS II adds vertical resolution advisories and is intended to provide...

READ MORE

A gust front case studies handbook

Published in:
MIT Lincoln Laboratory Report ATC-129

Summary

Gust fronts produce low altitude wind shear that can be hazardous to aircraft operations, especially during takeoff and landing. Radar meteorologists have long been able to identify gust front signatures in Doppler radar data, but in order to use the radars efficiently, automatic detection of such hazards is essential. Eight gust front case studies are presented. The data include photographs of the Doppler weather radar displays, thermodynamic and wind measurements from a 440 m high tower, environmental soundings and tables of gust front characteristics. The tabulated characteristics are those thought to be most important in developing rules for automatic gust front detection such as length and height, maximum and minimum values of reflectivity, velocity and spectrum width, and estimates of radial shear. For the cases studied, outflows could be detected most reliably in the velocity field, but useful information also could be gleaned from the spectrum width and reflectivity fields. The signal-to-noise ratio threshold was found to be a major factor in the ability of an observer to discern the gust front signature in the Doppler radar displays. Detection within the spectrum width field required a higher SNR than did the radial velocity field.
READ LESS

Summary

Gust fronts produce low altitude wind shear that can be hazardous to aircraft operations, especially during takeoff and landing. Radar meteorologists have long been able to identify gust front signatures in Doppler radar data, but in order to use the radars efficiently, automatic detection of such hazards is essential. Eight...

READ MORE

Fundamentals of mode S parity coding

Published in:
MIT Lincoln Laboratory Report ATC-117

Summary

This report presents the details and basic theory of the coding scheme employed on Mode S uplink and downlink transmissions. Since ATCRBS interference is the main source of error for these signals, a cyclic burst detection code was chosen for Mode S. This code permits simple error detection at the transponder and more complex error correction at the sensor. The theory behind cyclic encoding and decoding as used for Mode S is presented first. Then, since polynomial multiplication and division are required for these processes, circuits for these operations are described. Finally, the last chapter describes the actual implementations specified for encoding and decoding in both the transponder and sensor.
READ LESS

Summary

This report presents the details and basic theory of the coding scheme employed on Mode S uplink and downlink transmissions. Since ATCRBS interference is the main source of error for these signals, a cyclic burst detection code was chosen for Mode S. This code permits simple error detection at the...

READ MORE

A high stability TWTA for ground surveillance applications

Published in:
Proc. 1984 IEEE Natl. Radar Conf., 13-14 March 1984, pp. 110-114.

Summary

A high stability, C-band transmitter capable of supporting -68 dBr subclutter visibility over a wide range of pulse widths and duty factors was developed for use in a multimode, battlefield surveillance radar. The transmitter was mode-switched between groups of 1/4, 20 and 65 microsecond radar pulses and long duration (100ms) FSK burst. A key feature was the use of a high speed, interpulse regulator to maintain proper TWT voltage and to limit ripple independent of waveform without the need for excessively large energy storage. Actual measured performance met the 100 mV cathode ripple specification without the use of PKF synchronization, independent of PKI, duty cycle and pulse width and was confirmed via direct evaluation of electrode voltages, serrodyne phase jitter and the radar pulsed-Doppler spectrum.
READ LESS

Summary

A high stability, C-band transmitter capable of supporting -68 dBr subclutter visibility over a wide range of pulse widths and duty factors was developed for use in a multimode, battlefield surveillance radar. The transmitter was mode-switched between groups of 1/4, 20 and 65 microsecond radar pulses and long duration (100ms)...

READ MORE

Ground clutter cancellation for the NEXRAD system

Author:
Published in:
MIT Lincoln Laboratory Report ATC-122

Summary

Returns from the ground and associated obstacles surroudning a NEXRAD weather radar (i.e., ground clutter) will contaminate the estimates of weather echo spectral features (e.g., reflectivity, mean velocity, and spectral width). The ground clutter returns are particularly large at low elevation angles and close range (e.g., within 40 km). Additionally, the pulse repetition frequency (PRF) values necessary to obtain the desired weather Doppler features result in ground clutter contamination at ranges that are multiples of the unambiguous range interval (e.g., 115-175 km for a typical NEXRAD). Fortunately, the groung clutter power spectrum is localized around zero velocity so that one can reduce its effect by appropriate Doppler signal processing. Automatic reduction of clutter contamination is essential if NEXRAD is to achieve the desired automatic weather product generation capability. The results of an analytical/experimental study oreinted toward development of a clutter cancellation specification and assiciated quality assurance tests for the NEXRAD system are described.
READ LESS

Summary

Returns from the ground and associated obstacles surroudning a NEXRAD weather radar (i.e., ground clutter) will contaminate the estimates of weather echo spectral features (e.g., reflectivity, mean velocity, and spectral width). The ground clutter returns are particularly large at low elevation angles and close range (e.g., within 40 km). Additionally...

READ MORE