Publications
AI-enabled, ultrasound-guided handheld robotic device for femoral vascular access
Summary
Summary
Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions...
Relationships between cognitive factors and gait strategy during exoskeleton-augmented walking
Summary
Summary
Individual variation in exoskeleton-augmented gait strategy may arise from differences in cognitive factors, e.g., ability to respond quickly to stimuli or complete tasks under divided attention. Gait strategy is defined as different approaches to achieving gait priorities (e.g., walking without falling) and is observed via changes in gait characteristics like...
Utility of inter-subject transfer learning for wearable-sensor-based joint torque prediction models
Summary
Summary
Generalizability between individuals and groups is often a significant hurdle in model development for human subjects research. In the domain of wearable-sensor-controlled exoskeleton devices, the ability to generalize models across subjects or fine-tune more general models to individual subjects is key to enabling widespread adoption of these technologies. Transfer learning...
Metrics for quantifying cognitive factors that may underlie individual variation in exoskeleton use
Summary
Summary
Individual differences in adaptation to exoskeletons have been observed, but are not well understood. Kinematic, kinetic, and physiologic factors are commonly used to assess these systems. Parameters from experimental psychology and gait literature wereadapted to probe the lower extremity perception-cognition-action loop using measures of reaction times, gait task performance, and...
A neural network estimation of ankle torques from electromyography and accelerometry
Summary
Summary
Estimations of human joint torques can provide clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Predicting joint torques into the future can also be useful for anticipatory robot control design. In this work, we present a method of mapping joint torque...
Geographic source estimation using airborne plant environmental DNA in dust
Summary
Summary
Information obtained from the analysis of dust, particularly biological particles such as pollen, plant parts, and fungal spores, has great utility in forensic geolocation. As an alternative to manual microscopic analysis of dust components, we developed a pipeline that utilizes the airborne plant environmental DNA (eDNA) in settled dust to...
Near-term regional climate change over Bangladesh
Summary
Summary
Bangladesh stands out as a climate change hot spot due to its unique geography, climate, high population density, and limited adaptation capacity. Mounting evidence suggests that the country is already suffering from the effects of climate change which may get worse without aggressive action. Here, we use an ensemble of...
Geographic source estimation using airborne plant environmental DNA in dust
Summary
Summary
Information obtained from the analysis of dust, particularly biological particles such as pollen, plant parts, and fungal spores, has great utility in forensic geolocation. As an alternative to manual microscopic analysis, we developed a pipeline that utilizes the environmental DNA (eDNA) from plants in dust samples to estimate previous sample...
Detecting Parkinson's disease from wrist-worn accelerometry in the U.K. Biobank
Summary
Summary
Parkinson's disease (PD) is a chronic movement disorder that produces a variety of characteristic movement abnormalities. The ubiquity of wrist-worn accelerometry suggests a possible sensor modality for early detection of PD symptoms and subsequent tracking of PD symptom severity. As an initial proof of concept for this technological approach, we...
Speaker separation in realistic noise environments with applications to a cognitively-controlled hearing aid
Summary
Summary
Future wearable technology may provide for enhanced communication in noisy environments and for the ability to pick out a single talker of interest in a crowded room simply by the listener shifting their attentional focus. Such a system relies on two components, speaker separation and decoding the listener's attention to...